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No time to go through the derivations in detail, just showing 
the path and the main ideas.
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Suggested readings
Most of the material presented in these lectures follows the 
treatment presented in the textbook:

L. Amendola & S. Tsujikawa

Dark Energy
Theory and observations
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Suggested readings
Other useful references are:

Textbooks:
- S. Dodelson: Modern Cosmology
- S. Weinberg: Gravitation and Cosmology

Reviews:
- L. Amendola et al. (Euclid Theory WG): arXiv:1206.1225
- M. Baldi: arXiv:1210.6650
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๏ Basics of homogeneous cosmology
• From General Relativity to cosmology
• Friedmann Equations
• Continuity Equations
• Cosmic Inventory: matter species in the Universe
• Acceleration vs. deceleration

๏ Observational evidence of Cosmic Acceleration from geometry
• Cosmic age vs. stellar age
• Type Ia Supernovae

๏ The cosmological constant Λ
• Rise and fall of a fascinating concept: the history of Λ
• Problems of the cosmological constant (fine-tuning and coincidence)

Lecture 1
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Cosmology as a scientific discipline would not exist without the 
Theory of General Relativity (A. Einstein, 1915... by the way: 
1915-2015, happy birthday GR!!!)
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From General Relativity to cosmology (I)
Cosmology as a scientific discipline would not exist without the 
Theory of General Relativity (A. Einstein, 1915... by the way: 
1915-2015, happy birthday GR!!!)

1915: formulation of the theory of General Relativity (Einstein)
1916: first solution of GR equations for a central mass (Scwarzschild)
1917: first application of GR to a model universe, and introduction of 
a cosmological constant (Einstein)
1919: confirmation of light deflection from the Sun (Eddington)
1922: first solution of GR equations for an expanding universe with 
no cosmological constant (Friedmann)
1929: discovery of the cosmic expansion (Hubble)
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From General Relativity to cosmology (II)
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From General Relativity to cosmology (II)

Gµ⌫ = 8⇡GTµ⌫

The core result of GR is given by the Einstein field equations:

(1)
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is defined in terms of the Christoffel symbol        : 
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⌫� =

1

2
gµ↵(g↵⌫,� + g↵�,⌫ � g⌫�,↵) ; (4)[⇤],⇠ ⌘ @[⇤]/@x⇠



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

From General Relativity to cosmology (III)
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From General Relativity to cosmology (III)
Therefore, the Einstein tensor is fully determined by the metric 
tensor       , which is a unitary tensor (                       ) defined 
through the line element in a 4-dimensional space-time:

gµ⌫ gµ↵g↵⌫ = �µ⌫

ds

2 = gµ⌫dx
µ
dx

⌫ (5)
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From General Relativity to cosmology (III)
Therefore, the Einstein tensor is fully determined by the metric 
tensor       , which is a unitary tensor (                       ) defined 
through the line element in a 4-dimensional space-time:

gµ⌫ gµ↵g↵⌫ = �µ⌫

ds

2 = gµ⌫dx
µ
dx

⌫ (5)

Standard cosmology is based on the Cosmological Principle: the 
Universe is homogeneous and isotropic on sufficiently large scales. 
This assumption corresponds to a particular form of the metric 
tensor called the Friedmann-Lemaître-Robertson-Walker (FLRW) 
metric:

ds2 = �dt2 + a2(t)


dr2

1�Kr2
+ r2(d✓2 + sin2 ✓d�2)

�

for a 3+1 splitting of a time coordinate (the cosmic time             ) 
and 3 polar spatial coordinates 

x

0 = t

(x1
, x

2
, x

3) = (r, ✓,�)

(6)
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From General Relativity to cosmology (IV)
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From General Relativity to cosmology (IV)
With FLRW, the Einstein eqs. are highly simplified, as there are 
only a bunch of non-vanishing components of Christoffel symbols: 

where                  is the Hubble function and describes the dynamics 
of the Universe:             = expansion,              = contraction

H ⌘ ȧ/a

�0
ij = a2H�ij , �i

0j = �i
j0 = H�ij

�

2
12 = �

2
21 = �

3
13 = �

3
31 =

1

r
, �

3
23 = �

3
32 = cot ✓

�

1
33 = �r(1�Kr2 sin ✓), �

2
33 = � sin ✓ cos ✓

�1
11 =

Kr

1�Kr2
, �1

22 = �r(1�Kr2)

�0
11 = a2H(1�Kr2)�1 �0

22 = a2Hr2 �0
33 = a2Hr2 sin2 ✓, ,

,

(7)

H > 0 H < 0
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From General Relativity to cosmology (IV)

• The Cosmological Principle (FLRW) reduces the number of 
independent Christoffel symbols from 64 to 10.
• The dynamics of the universe is encoded in one function: a(t)

With FLRW, the Einstein eqs. are highly simplified, as there are 
only a bunch of non-vanishing components of Christoffel symbols: 
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Cosmic expansion and Hubble’s law

v ~ H d

Hubble, 1929

For               the Doppler effect givesv ⌧ c �0 ' (1 + v/c)�
from which z ' v/c

(8)z ⌘ �0

�
� 1 =

a0
a

� 1 ) dt = �dz/[H(1 + z)]
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Cosmic expansion and Hubble’s law

v ~ H d

Hubble & Humason, 1931
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Cosmic expansion and Hubble’s law

v ~ H d

The distance from an observer at the origin in FLRW is
~r = a(t)~x

From which                                            and the radial velocity is:~̇r = H~r + a~̇x ⌘ ~vH + ~vp

v = Hr + ~vp · ~r/r ! v ' H0r                                                        for               andz ⌧ 1 vp ⌧ Hr (9)
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From General Relativity to cosmology (V)
Substituting the non-vanishing Christoffel symbols in the 
expression of the Riemann tensor (eq. 3) one gets:

R00 = �3(H2 + Ḣ) R0i = Ri0 = 0

R33 = a2Ar2 sin2 ✓R22 = a2Ar2R11 = a2A
1

1�Kr2

where A ⌘ (3H2 + Ḣ + 2K/a2)

(10)R = 6A
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(10)R = 6A

Finally, substituting in eq. 2 one gets the non-vanishing elements of 
the Einstein tensor:

Gi
j = �(3H2 + 2Ḣ +K/a2)�ijG0
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The Friedmann Equations
For a FLRW metric the energy-momentum tensor          can only 
take the form of a perfect fluid:

Tµ
⌫ = (⇢+ p)uµu⌫ + p�µ⌫

Tµ⌫

where                               is the 4-velocity in comoving coordinates.uµ = (�1, 0, 0, 0)

(12)
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The Friedmann Equations
For a FLRW metric the energy-momentum tensor          can only 
take the form of a perfect fluid:

Tµ
⌫ = (⇢+ p)uµu⌫ + p�µ⌫

Tµ⌫

where                               is the 4-velocity in comoving coordinates.uµ = (�1, 0, 0, 0)

(12)

So, from the          and          components of the Einstein eqs. (1) 
one gets the two Friedmann equations:

(0, 0) (i, i)

H2 =
8⇡G

3
⇢� K

a2

3H2 + 2Ḣ = �8⇡Gp� K

a2

(0, 0) :

(i, i) : ) ä

a
= �4⇡G

3
(⇢+ 3p)

(13)

(14)
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These two equations fully describe the global dynamics of a 
homogeneous and isotropic Universe.
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The continuity Equation and Bianchi identities
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The continuity Equation and Bianchi identities
By differentiating the first Friedmann eq. (11) and substituting in the 
second eq. (12) one gets the Continuity Equation: 

⇢̇+ 3H(⇢+ p) = 0 (15)

which describes the evolution of the energy density in an 
expanding or contracting homogeneous and isotropic Universe.
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The continuity Equation and Bianchi identities
By differentiating the first Friedmann eq. (11) and substituting in the 
second eq. (12) one gets the Continuity Equation: 

⇢̇+ 3H(⇢+ p) = 0 (15)

which describes the evolution of the energy density in an 
expanding or contracting homogeneous and isotropic Universe.
The same equation can be derived from a conservation property of 
the Einstein tensor called the Bianchi identities:

rµG
µ
⌫ ⌘ @G

µ
⌫

@x

µ
+ �µ

↵µG
↵
⌫ � �↵

⌫µG
µ
↵ = 0 (16)
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The continuity Equation and Bianchi identities
By differentiating the first Friedmann eq. (11) and substituting in the 
second eq. (12) one gets the Continuity Equation: 

⇢̇+ 3H(⇢+ p) = 0 (15)

which describes the evolution of the energy density in an 
expanding or contracting homogeneous and isotropic Universe.
The same equation can be derived from a conservation property of 
the Einstein tensor called the Bianchi identities:

rµG
µ
⌫ ⌘ @G

µ
⌫

@x

µ
+ �µ

↵µG
↵
⌫ � �↵

⌫µG
µ
↵ = 0 (16)

from which follows:
rµT

µ
⌫ = 0 (17)

which gives the same result as (13) for a FLRW metric
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Cosmic Inventory: matter species in the Universe

E = m/
p

1� v2

c = 1
From the expression of a particle’s energy and momentum in 
Special Relativity (in units of           ):

p = mv/
p

1� v2 (18)
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E = m/
p

1� v2

c = 1
From the expression of a particle’s energy and momentum in 
Special Relativity (in units of           ):

p = mv/
p

1� v2 (18)

and from the phase space occupancy in Quantum Mechanics:

f(p) =
1

exp[(E � µ)/T ]± 1

+ Fermi-Dirac
− Bose-Einstein

chemical potential
temperatureT

µ (19)
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Cosmic Inventory: matter species in the Universe

E = m/
p

1� v2

c = 1
From the expression of a particle’s energy and momentum in 
Special Relativity (in units of           ):

p = mv/
p

1� v2 (18)

and from the phase space occupancy in Quantum Mechanics:

f(p) =
1

exp[(E � µ)/T ]± 1

+ Fermi-Dirac
− Bose-Einstein

chemical potential
temperatureT

µ (19)

making use of Heisenberg’s Principle                                one gets 
the expression for the energy and pressure density 

d

3
xd

3
p ⇠ (2⇡~)3

⇢ = g?

Z
d3p

(2⇡~)3E(p)f(p) p = g?

Z
d3p

(2⇡~)3
pv

3
f(p) (20)
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making use of Heisenberg’s Principle                                one gets 
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3
xd
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Z
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Z
d3p
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In the relativistic (             ) and non-relativistic (             ) limits this 
gives:

m ⌧ T m � T

pr/⇢r = wr = 1/3 pnr/⇢nr = wnr ' 0 (21)
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Deceleration vs. acceleration

⇢̇+ 3H(⇢+ p) = 0

H2 =
8⇡G

3
⇢� K

a2

) ⇢ / a�3(1+w)

For relativistic (                ) or non-relativistic (               ) matter the 
equation of state     is a constant. This allows to integrate the first 
Friedmann eq. (11) and the continuity eq. (13) to obtain:

wr = 1/3 wnr ' 0
w

) a / (t� ti)
2/[3(1+w)]

(22)

(23)for K = 0
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Deceleration vs. acceleration

these imply that for both matter types the expansion is decelerated:
• relativistic matter

• non-relativistic matter
! ⇢ / a�4; a / (t� ti)

1/2

! ⇢ / a�3; a / (t� ti)
2/3

⇢̇+ 3H(⇢+ p) = 0

H2 =
8⇡G

3
⇢� K

a2

) ⇢ / a�3(1+w)

For relativistic (                ) or non-relativistic (               ) matter the 
equation of state     is a constant. This allows to integrate the first 
Friedmann eq. (11) and the continuity eq. (13) to obtain:

wr = 1/3 wnr ' 0
w

) a / (t� ti)
2/[3(1+w)]

(22)

(23)for K = 0
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Deceleration vs. acceleration

these imply that for both matter types the expansion is decelerated:
• relativistic matter

• non-relativistic matter
! ⇢ / a�4; a / (t� ti)

1/2

! ⇢ / a�3; a / (t� ti)
2/3

From the second Friedmann eq. (12) one gets more in general:

deceleration

acceleration

(ä < 0) ) w > �1/3

(ä > 0) ) w < �1/3

ä

a
=

4⇡G

3
⇢(1 + 3w)

⇢̇+ 3H(⇢+ p) = 0

H2 =
8⇡G

3
⇢� K

a2

) ⇢ / a�3(1+w)
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Since all known types of matter imply a decelerated expansion, 
why should we consider the possibility of cosmic acceleration?
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Who cares about acceleration?
Since all known types of matter imply a decelerated expansion, 
why should we consider the possibility of cosmic acceleration?
1) The flatness problem and primordial inflation
The first Friedmann equation (11) can be recast in the form:

⌦M + ⌦K = 1 where

⌦M = ⇢/⇢crit; ⌦K = �K/(aH)2; ⇢crit ⌘ 3H2/(8⇡G)

for            the curvature term           increases in time unlessä < 0 |⌦K | K = 0

(24)
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Who cares about acceleration?
Since all known types of matter imply a decelerated expansion, 
why should we consider the possibility of cosmic acceleration?

Observations constrain                          , which implies a phase of 
cosmic acceleration in the past (inflation) to reduce the curvature, 
unless the Universe was extremely close to flatness from the start.

|⌦(0)
K | < 0.008
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for            the curvature term           increases in time unlessä < 0 |⌦K | K = 0
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Who cares about acceleration?
Since all known types of matter imply a decelerated expansion, 
why should we consider the possibility of cosmic acceleration?

Observations constrain                          , which implies a phase of 
cosmic acceleration in the past (inflation) to reduce the curvature, 
unless the Universe was extremely close to flatness from the start.

|⌦(0)
K | < 0.008

2) Observational evidence of cosmic acceleration at low redshift: 
the Dark Energy problem

1) The flatness problem and primordial inflation
The first Friedmann equation (11) can be recast in the form:

⌦M + ⌦K = 1 where

⌦M = ⇢/⇢crit; ⌦K = �K/(aH)2; ⇢crit ⌘ 3H2/(8⇡G)

for            the curvature term           increases in time unlessä < 0 |⌦K | K = 0

(24)
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observational
evidence of cosmic 

acceleration: 
geometrical probes

(under the assumption 
of the cp)
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Age of the Universe (I)
Let us consider a Universe filled with relativistic matter (r), non-
relativistic matter (m), and a further component (x) with a generic 
equation of state           , possibly evolving in time           .w

x

(z)
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Age of the Universe (I)
Let us consider a Universe filled with relativistic matter (r), non-
relativistic matter (m), and a further component (x) with a generic 
equation of state           , possibly evolving in time           .w

x

(z)

Combining the first Friedmann eq. and the continuity eq. one has:

H2 =
8⇡G

3
(⇢

r

+ ⇢
m

+ ⇢
x

)� K

a2
=H2

0E
2(z)

with

E(z) ⌘
h
⌦(0)

r (1 + z)4 + ⌦(0)
m (1 + z)3 + ⌦(0)

K (1 + z)2+

⌦(0)
x

e
R

z

0
3(1+w

x

(z̃))
1+z̃

dz̃

i1/2

(25)

(26)
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Age of the Universe (I)
Let us consider a Universe filled with relativistic matter (r), non-
relativistic matter (m), and a further component (x) with a generic 
equation of state           , possibly evolving in time           .w

x

(z)

Combining the first Friedmann eq. and the continuity eq. one has:

H2 =
8⇡G

3
(⇢

r

+ ⇢
m

+ ⇢
x

)� K

a2
=H2

0E
2(z)

with

E(z) ⌘
h
⌦(0)

r (1 + z)4 + ⌦(0)
m (1 + z)3 + ⌦(0)

K (1 + z)2+

⌦(0)
x

e
R

z

0
3(1+w

x

(z̃))
1+z̃

dz̃

i1/2

(25)

(26)

Now, using the relation                                        one can compute 
the age of the Universe: 

dt = �dz/ [H(1 + z)]

t0 =
1

H0

Z 1

0

dz

E(z)(1 + z)
(27)
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Age of the Universe (II)
For a flat                      Universe with only relativistic and non-
relativistic matter                        one gets: 

(|⌦K | = 0)
(i.e.⌦

x

= 0)

t0 ' 2

3
H�1

0

This is smaller than the age of some globular clusters (~13 Gyr)

⇡ 10Gyr forH0 ⇡ 72 km/s/Mpc (28)
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Age of the Universe (II)
For a flat                      Universe with only relativistic and non-
relativistic matter                        one gets: 

(|⌦K | = 0)
(i.e.⌦

x

= 0)

t0 ' 2

3
H�1

0

This is smaller than the age of some globular clusters (~13 Gyr)

⇡ 10Gyr forH0 ⇡ 72 km/s/Mpc (28)

• For an open                   Universe, the age becomes larger:(⌦K > 0)

t0 ' H�1
0

⌦(0)
K

2

41 + 1� ⌦(0)
K

2
q

⌦(0)
K

ln

0

@1�
q

⌦(0)
K

1 +
q

⌦(0)
K

1

A

3

5 H�1
0

⌦(0)
K �! 1

(29)
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Age of the Universe (II)
For a flat                      Universe with only relativistic and non-
relativistic matter                        one gets: 

(|⌦K | = 0)
(i.e.⌦

x

= 0)

t0 ' 2

3
H�1

0

This is smaller than the age of some globular clusters (~13 Gyr)

⇡ 10Gyr forH0 ⇡ 72 km/s/Mpc (28)

• For an open                   Universe, the age becomes larger:(⌦K > 0)

t0 ' H�1
0

⌦(0)
K

2

41 + 1� ⌦(0)
K

2
q

⌦(0)
K

ln

0

@1�
q

⌦(0)
K

1 +
q

⌦(0)
K

1

A

3

5 H�1
0

⌦(0)
K �! 1

(29)

• For a flat Universe with an extra component with 

t0 ' H�1
0

3

q
⌦(0)

x

ln

0

@1 +

q
⌦(0)

x

1�
q
⌦(0)

x

1

A 1⌦(0)
x

�! 1

w
x

= �1

(30)



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

Age of the Universe (III)
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Type Ia supernovae (I)

Ls

Supernovae of type Ia are astrophysical objects with a “standard” 
intrinsic luminosity     : can be used as “standardiseable candles”

Their luminosity distance

d2L ⌘ Ls

4⇡F
can be inferred from a measured flux F
while z can be measured from spectra

(31)
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Type Ia supernovae (I)

Ls

Supernovae of type Ia are astrophysical objects with a “standard” 
intrinsic luminosity     : can be used as “standardiseable candles”

Their luminosity distance

d2L ⌘ Ls

4⇡F
can be inferred from a measured flux F
while z can be measured from spectra

(31)

Since            depends on the expansion 
rate through          : 

dL(z)
E(z)

dL =
1 + z

H0

q
⌦(0)

K

sinh

✓q
⌦(0)

K

Z z

0

dz̃

E(z̃)

◆

one can use SnIa measurements to 
constrain the expansion rate

(32)
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Type Ia supernovae (II)
At low redshifts, and for the case of a 3-component Universe with
                      the luminosity distance can be expanded as:

d
L

(z) =
1

H0


z +

1

4

⇣
1� 3w

x

⌦(0)
x

+ ⌦(0)
K

⌘
z2 +O(z3)

�
w

x

= const.

(33)
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Type Ia supernovae (II)
At low redshifts, and for the case of a 3-component Universe with
                      the luminosity distance can be expanded as:

d
L

(z) =
1

H0


z +

1

4

⇣
1� 3w

x

⌦(0)
x

+ ⌦(0)
K

⌘
z2 +O(z3)

�
w

x

= const.

(33)

• For a flat Universe                    with                  this gives:(⌦(0)
K = 0) ⌦(0)

x

= 0

dL(z) = H�1
0

⇥
z + z2/4 +O(z3)

⇤
(34)
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Type Ia supernovae (II)

• In the presence of an accelerating matter component 
                                            the luminosity distance gets larger(w

x

< �1/3, ⌦(0)
x

> 0)

At low redshifts, and for the case of a 3-component Universe with
                      the luminosity distance can be expanded as:

d
L

(z) =
1

H0


z +

1

4

⇣
1� 3w

x

⌦(0)
x

+ ⌦(0)
K

⌘
z2 +O(z3)

�
w

x

= const.

(33)

• For a flat Universe                    with                  this gives:(⌦(0)
K = 0) ⌦(0)

x

= 0

dL(z) = H�1
0

⇥
z + z2/4 +O(z3)

⇤
(34)
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Type Ia supernovae (II)

• In the presence of an accelerating matter component 
                                            the luminosity distance gets larger(w

x

< �1/3, ⌦(0)
x

> 0)

At low redshifts, and for the case of a 3-component Universe with
                      the luminosity distance can be expanded as:

d
L

(z) =
1

H0


z +

1

4

⇣
1� 3w

x

⌦(0)
x

+ ⌦(0)
K

⌘
z2 +O(z3)

�
w

x

= const.

(33)

• For a flat Universe                    with                  this gives:(⌦(0)
K = 0) ⌦(0)

x

= 0

dL(z) = H�1
0

⇥
z + z2/4 +O(z3)

⇤
(34)

• The luminosity distance is related to the apparent magnitude     :m

m(z) = 5 log10 dL(z) + const.

so the magnitude-redshift diagram can place constraints on w
x

⌦
x

(35)
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Type Ia supernovae (III)

Perlmutter et al. 1999

Perlmutter et al. 1999
Riess et al. 1998

Schmidt et al. 1999
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Type Ia supernovae (IV)

Union 2.1 (Suzuki et al 2011)
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cosmological 

constant
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The cosmological constant (I)
Observational data are inconsistent with a decelerated expansion 
and require a matter component with                      which is usually 
termed “Dark Energy” (DE)

w
x

< �1/3
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The cosmological constant (I)
Observational data are inconsistent with a decelerated expansion 
and require a matter component with                      which is usually 
termed “Dark Energy” (DE)

w
x

< �1/3

The simplest DE candidate is the cosmological constant    , defined 
by the property:  

⇤
wDE = w⇤ = �1 ) ⇢⇤ = const.
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The cosmological constant (I)
Observational data are inconsistent with a decelerated expansion 
and require a matter component with                      which is usually 
termed “Dark Energy” (DE)

w
x

< �1/3

The simplest DE candidate is the cosmological constant    , defined 
by the property:  

⇤
wDE = w⇤ = �1 ) ⇢⇤ = const.

The cosmological constant was first introduced by Einstein in 1917 
to obtain static solutions to GR equations applied to a model 
Universe:

Gµ⌫+⇤gµ⌫ = 8⇡GTµ⌫ ){H2 =
8⇡G

3
⇢� K

a2
+
⇤

3

ä

a
= �4⇡G

3
(⇢+ 3p)+

⇤

3

for pressureless matter ä = ȧ = 0 ) ⇢ =
⇤

4⇡G
,
K

a2
= ⇤

(36)

(37)



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

The cosmological constant (II)
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The cosmological constant (II)
The Einstein equations with the cosmological constant term can be 
derived from the most general second order Action in the metric 
tensor       : gµ⌫

S =
1

16⇡G

Z
d

4
x

p
�g (R�2⇤) + Sm (38)
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The cosmological constant (II)

�S =
1

16⇡G

Z
d

4
x

p
�g

✓
Rµ⌫ � 1

2
Rgµ⌫+⇤gµ⌫

◆
�g

µ⌫ + �Sm

where          defines the matter energy-momentum tensor:�Sm

�Sm = �1

2

Z
d

4
x

p
�gTµ⌫�g

µ⌫

(39)

(40)

The Einstein equations with the cosmological constant term can be 
derived from the most general second order Action in the metric 
tensor       : gµ⌫

S =
1

16⇡G

Z
d

4
x

p
�g (R�2⇤) + Sm (38)
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The cosmological constant (II)

�S =
1

16⇡G

Z
d

4
x

p
�g

✓
Rµ⌫ � 1

2
Rgµ⌫+⇤gµ⌫

◆
�g

µ⌫ + �Sm

where          defines the matter energy-momentum tensor:�Sm

�Sm = �1

2

Z
d

4
x

p
�gTµ⌫�g

µ⌫

(39)

(40)

The Einstein equations with the cosmological constant term can be 
derived from the most general second order Action in the metric 
tensor       : gµ⌫

S =
1

16⇡G

Z
d

4
x

p
�g (R�2⇤) + Sm (38)

so that through the Action Principle one gets

�S = 0 ) Rµ⌫ � 1

2
Rgµ⌫+⇤gµ⌫ = 8⇡GTµ⌫ (41)
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The fine-tuning problem of Λ (I)
Einsteins’ idea of a static Universe was abandoned after Hubble’s 
discovery of the cosmic expansion, and so was Λ. The discovery of 
cosmic acceleration revived the interest around Λ 70 years later...
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The fine-tuning problem of Λ (I)
Einsteins’ idea of a static Universe was abandoned after Hubble’s 
discovery of the cosmic expansion, and so was Λ. The discovery of 
cosmic acceleration revived the interest around Λ 70 years later...
In order to explain the observed acceleration the cosmological 
constant should be of the order:

The vacuum energy of quantum fields has the property
so it would be a natural candidate for Λ. 

⇢vac ⇠ c

(42)⇤ ⇡ H2
0 ) ⇢⇤ ⇡ 10�123M4

Pl
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The fine-tuning problem of Λ (I)
Einsteins’ idea of a static Universe was abandoned after Hubble’s 
discovery of the cosmic expansion, and so was Λ. The discovery of 
cosmic acceleration revived the interest around Λ 70 years later...

⇢
vac

=

Z k
max

0

d3k

(2⇡)3
1

2

p
k2 +m2 ⇡ k4

max

16⇡2

=
M4

Pl

16⇡2 if k
max

= M
Pl

m k E =
p

k2 +m2/2

However, from quantum mechanics the zero-point energy of a field 
of mass      and momentum     is                                  so that:

(43)

In order to explain the observed acceleration the cosmological 
constant should be of the order:

The vacuum energy of quantum fields has the property
so it would be a natural candidate for Λ. 

⇢vac ⇠ c

(42)⇤ ⇡ H2
0 ) ⇢⇤ ⇡ 10�123M4

Pl



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

The fine-tuning problem of Λ (II)
Even if one assumed that                 (for some unknown symmetry 
principle) and that Λ arises from some other mechanism, still its 
value has to be fine-tuned at early times due to 

⇢vac = 0

⇢⇤ = const.
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The coincidence problem of Λ (I)
The second fundamental problem of the cosmological constant is 
the unnatural coincidence of its energy density with the density of 
matter at the present time: this is the coincidence problem:

⇢⇤ ⇡ 2.4⇢(0)M (44)
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The coincidence problem of Λ (I)

Another way to see the coincidence problem is the unlikely 
coincidence of the crossover time between       and         with the 
present time: 

⌦⇤ ⌦M

zcr. ⇡
 

⌦(0)
⇤

1� ⌦(0)
⇤

!1/3

� 1 ⇡ 0.3

z > zcr. ) ⌦⇤ ⌧ ⌦M

z < zcr. ) ⌦⇤ � ⌦M

so that the present appears to be a special and unique time in the 
cosmic evolution.

The second fundamental problem of the cosmological constant is 
the unnatural coincidence of its energy density with the density of 
matter at the present time: this is the coincidence problem:

⇢⇤ ⇡ 2.4⇢(0)M (44)
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The coincidence problem of Λ (II)
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Recap Lecture 1

Gµ⌫ = 8⇡GTµ⌫

General Relativity
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Recap Lecture 1

Gµ⌫ = 8⇡GTµ⌫

General Relativity

ds2 = �dt2 + a2(t)


dr2

1�Kr2
+ r2(d✓2 + sin2 ✓d�2)

�
plus the Cosmological Principle (FLRW metric)
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Recap Lecture 1

Gµ⌫ = 8⇡GTµ⌫

General Relativity

ds2 = �dt2 + a2(t)


dr2

1�Kr2
+ r2(d✓2 + sin2 ✓d�2)

�
plus the Cosmological Principle (FLRW metric)

for a perfect fluid
Tµ
⌫ = (⇢+ p)uµu⌫ + p�µ⌫
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Recap Lecture 1

Gµ⌫ = 8⇡GTµ⌫

General Relativity

ds2 = �dt2 + a2(t)


dr2

1�Kr2
+ r2(d✓2 + sin2 ✓d�2)

�
plus the Cosmological Principle (FLRW metric)

for a perfect fluid
Tµ
⌫ = (⇢+ p)uµu⌫ + p�µ⌫

result in the Friedmann equations

H2 =
8⇡G

3
⇢� K

a2

) ä

a
= �4⇡G

3
(⇢+ 3p)

that fully describe the dynamics of the homogeneous universe.
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Recap Lecture 1
The Friedmann equations can be combined to get the continuity 
equation

⇢̇+ 3H(⇢+ p) = 0
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The Friedmann equations can be combined to get the continuity 
equation

⇢̇+ 3H(⇢+ p) = 0

which can also be derived from Bianchi identities

rµT
µ
⌫ = 0
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Recap Lecture 1
The Friedmann equations can be combined to get the continuity 
equation

⇢̇+ 3H(⇢+ p) = 0

which can also be derived from Bianchi identities

rµT
µ
⌫ = 0

For standard matter the second Friedmann eq. gives deceleration

(ä < 0) ) w > �1/3 (ä > 0) ) w < �1/3
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Recap Lecture 1
The Friedmann equations can be combined to get the continuity 
equation

⇢̇+ 3H(⇢+ p) = 0

which can also be derived from Bianchi identities

rµT
µ
⌫ = 0

For standard matter the second Friedmann eq. gives deceleration

(ä < 0) ) w > �1/3 (ä > 0) ) w < �1/3

Several observations (age of the Universe, type Ia Supernovae) 
are inconsistent with a decelerated expansion. A possible 
explanation is a cosmological constant:

H2 =
8⇡G

3
⇢� K

a2
+
⇤

3

ä

a
= �4⇡G

3
(⇢+ 3p)+

⇤

3

but this suffers of fundamental theoretical problems (fine-tuning, 
coincidence)


