Transient Sky in the Era of Time-Domain Astronomy

Cristiano Guidorzi

Lecture 1

SN 2011fe

Sept 7-11, 2015

Breakthrough: 1572

Tycho Brahe reports on a Stella "nova"

Distantiam Verò huius stellæ à fixis aliquibus in hac Cassiopeiæ constellatione, exquisito instrumento, & omnium minutorum capacj, aliquoties observaui. Inueni autem eam distare ab ca,quæ est in pectore, Schedir appellata B, J. partibus & 55. minutis : à superiori Verò

Another one! 1604

Johannes Kepler observes another Stella "nova"

Sept 7-11, 2015

Ferrara PhD School

4

TIME DOMAIN ASTRONOMY

- (periodic) variable stars:
 - RR Lyrae
 - Cepheids
- Aperiodic (explosive) events:
 - Novae
 - cataclysmic variables (Cvs)
 - AGNs
- Disruptive events:
 - Supernovae (SNe) of different spectral classes

Multi-wavelength Astronomy

The X-ray sky

Mass Accretion

V404 Cygni: comeback after 26 years!

June 15, 2015, 18:32 UT

Swift, Konus-WIND, MAXI ... triggered on it.

- LXMB with a BH with M_{вн}=6.08 ± 0.06 M_☉
- accreting matter from a K0 subgiant companion star
- P = 6.5 days
- Distance: 2.4 kpc (~8000 lyght-years)
- In 1989 it gave an outburst peaking at 17 Crab with L=7x10³⁸ erg/s

Miller-Jones+09

Assuming the distance 2.4 kpc

Energy $\sim 8.9 \times 10^{40}$ erg,

peak luminosity L is ~1.1x10^38 erg/s.

Further activity: there are at least two episodes detected on June 16, 2015.

(Golenetskii et al. GCN 17938)

X-ray echo rings caused by foreground Galactic dust.

Sept 7-11,

Ferrara PhD School

Blobs of plasma

. compact object

Accretion disk

Companion star

Jet

TIME DOMAIN ASTRONOMY

22

Optical Phase Space: Then and Now

Transients: science drivers

- Traditionally wide-field sky monitoring confined to high-energies or optical (e.g. SNe, novae)
- We can now fill in gaps in the phase space

Transients: science drivers

• Study of physics laws in extreme conditions (e.g., SNe, GRBs, TDEs, neutron stars, stellar BHs, SMBHs)

- Extreme accelerators (SN remnants, relativistic jets)
- Less luminous transients (flaring stars), accretion in our Galaxy, evolution of stars and galaxies
- Transients as probes to constrain cosmology (SNe,GRBs, first stars)

Revolution

Data poverty

immense exponentially growing data richness (Big Data)

Recent discoveries:

- Predicted and sought-after

New discovery space

• Unexpected

Astronomy has just entered the Time Domain and Synoptic Sky Survey Era

Sept 7-11, 2015

TIME DOMAIN ASTRONOMY

- Revolution in our ability to monitor the Universe
- Capture the **behaviour of the temporal sky** with **high cadence across the e.m. spectrum** and through **neutrino and gravitational wave** physics.
- Census of the transient sky

Summing up, keys are...

Sept 7-11, 2015

Ferrara PhD School

32

Sept 7-11, 2015

Sept 7-11, 2015

Sept 7-11, 2015

ARE YOU READY FOR THE BIG DATA EXPLOSION?

More info is entering organisations than ever before, and it all requires management.

 Learn more about the impact of Big Data

Sept 7-11, 2015

ARE YOU READY FOR THE BIG DATA **EXPLOSION?**

More info is entering organisations than ever before, and it all requires management.

Learn more about the impact of Big Data

Sept 7-11, 2015

Journey through Transients and Present/Future related Science

- Swift review of a <u>very selected sample</u> among the hottest kinds of transients (lectures 1+2)
- Review of current and future surveys and related issues/strategies (lecture 2)

Observational perspective: mindboggling variety!

- Asteroids, comets, NEO
- Occultations by trans-Neptunian objects
- Exoplanets via microlensing/transits
- T Tauri outbursts, episodic accretion
- X-ray transients, X-ray binaries
- Novae, Supernovae, high-z Quasars
- Gamma-Ray Bursts (GRBs)
- Tidal Disruption Events (TDEs)
- Fast Radio Bursts (FRBs)
- SuperLuminous Supernovae (SLSNe)
- Luminous Blue Variables (LBVs) SN Impostors
- Ultra-Luminous X-ray sources (ULXs)

Tidal Disruption Events (TDEs)

a long-predicted tale that turned real

Sep 7-11, 2015

Super Massive Black Holes (SMBHs)

Most galaxies host a SMBH $(10^{6}-10^{9} \text{ M})$ in their centre.

Copious amount of radiation due to accreted matter

THE MONSTERIN THE MIDDLE

By tracking stars near the mysterious object at the centre of the Milky Way, astronomers have shown that they move in years-long orbits; 8 examples are shown here. These orbits prove that the object packs the mass of 4.1 million Suns into a space smaller than the Solar System, and can only be a black hole.

Most galax 4° bits of host a SMBH (10⁶-10⁹ M) in their centre.

Galactic Centre

Dynamical measure through tracking of stars orbiting close (Milky Way)

THE MONSTER IN THE MIDDLE

By tracking stars near the mysterious object at the centre of the Milky Way, astronomers have shown that they move in years-long orbits; 8 examples are shown here. These orbits prove that the object packs the mass of 4.1 million Suns into a space smaller than

But, what if the surrounding environment is poor in gas?

Orbits of

em

stars

THE BLACK HOLE

the Sola

Can we probe these "dormant" black holes?

Tidal Disruption: basics

When a star passes too close, it is torn apart by the BH tidal forces:

$$\frac{GM}{R_T^3}R_* = \frac{Gm_*}{R_*^2}$$

- M = BH mass
- R_T = tidal disruption radius
- R_{*} = star radius
- m_{*} = star mass

$$R_T = \left(\frac{M}{m_*}\right)^{1/3} R_*$$

• Example:

$$M = 4x10^{6} m_{*}; R_{*} = R_{\odot}$$
$$\Rightarrow R_{T} \approx 1 \text{ AU}$$

47

Disrupted or swallowed?

When BH Schwarzschild radius is too large, the star gets swallowed. To avoid this:

$$R_{T} = \left(\frac{M}{m_{*}}\right)^{1/3} R_{*} > R_{s} = \frac{2GM}{c^{2}}$$
$$M_{crit} \approx 10^{8} \left(\frac{R_{*}}{R_{sun}}\right)^{3/2} \left(\frac{m_{*}}{m_{sun}}\right)^{-1/2} m_{sun}$$

For a given BM mass M, R_T depends sensitively on stellar size

Half bound, half unbound

Mass accretion rate of bound debris

Mass accretion rate of bound debris

Fallback rate at $t > t_p$ scales as $t^{-5/3}$

The accretion rates exhibit the $t^{-5/3}$ decay expected for the range of eccentric Keplerian orbits:

 $\frac{dm}{dt} = \frac{dm}{dE} \frac{dE}{dt}$

Assuming dm/dE \sim constant, in agreement with simulations within a factor of a few:

(Rees88; Evans+Kochanek89; Lodato+09)

Sep 7-11, 2015

(circularization may be affected).

Sep 7-11, 2015

10

y/M_h

-10

-20

TDEs are rare events

• The tidal radius for main sequence (MS) stars is only ~ 1 AU.

- Stars that fall into the SMBH likely come from its sphere of influence, ~ 1 pc.
- Per star, the disruption rate is very low:

1 every 10,000 years per galaxy!

Throwing a star into the tidal radius is like throwing a grain of salt through the eye of a sewing needle a km away.

- Thermal, Bright in UV/soft X-rays
- $T_{_{BB}} > 2x10^5 \text{ K}$

Sep 7-11, 2015

Ferrara PhD School

(Rees88; Evans+Kochanek89; Lodato+09)

First soft X-ray TDE Candidates

Until 2011 a few candidates with X-ray declining curves in agreement with predictions, poorly constrained though (Komossa+99+04, Esquej+08)

+ optical TDE Candidates

Sep 7-11, 2015

March 28, 2011: Sw J1655+57

Swift J1644+57: Onset of a relativistic jet

- 2. Strong tidal forces near the black hole increasingly distort the star. If the star passes too close, it is ripped apart.
- 3. The part of the star facing the black hole streams toward it and forms an accretion disk. The remainder of the star just expands into space.
- 4. Near the black hole, magnetic fields power a narrow jet of particles moving near the speed of light. Viewed head-on, the jet is a brilliant X-ray and radio source.

Credit: NASA/Goddard Space Flight Center/Swift

Sw J1655+57: at the centre of its host galaxy at z=0.354

Sep 7-11, 2015

Birth of a relativistic jet: scintillation

Sw J1655+57: 2-year X-ray light curve

Sep 7-11, 2015

Sw J1655+57: 2-year X-ray light curve

Sep 7-11, 2015

Sw J1655+57: 2-year of radio obs

Sep 7-11, 2015

Ferrara PhD School

64

Sw J2058+05: 2nd TDE candidate

z = 1.1853

Sep 7-11, 2015

Sw J1112.2-8238: 3rd relativistic TDE candidate

67

UV-optical flare from a TD of a helium-rich stellar core

70

UV-optical flare from a TD of a helium-rich stellar core

Modelling the TDE light curves and spectra:

- $R_n \sim R_T$
- Polytropic exponent of 5/3 (fully convective star or a degenerate core)
- $t_p = 72 \pm 2$ days
- M = (1.9 \pm 0.1) x 10⁶ M_.
- Broad high-ionization HeII emission at 4,686 A
- Lack of Balmer line emission, low H mass fraction: < 0.2
- $L_p \sim 2.2 \text{ x } 10^{44} \text{ erg/s}$; $E \sim 2 \text{ x } 10^{51} \text{ erg}$

Consistent with a tidally stripped core of a red giant (precursor to helium white dwarf)

UV-optical flare from a TD of a helium-rich stellar core

Peak Lum of 20 TDEs (as of 05/2014)

The shaded region shows the range of Eddington upper limits on luminosity for black holes with masses ranging from 10⁶ to 10⁷ solar masses.

Only three TDE candidates discovered in hard-x-ray flares by the Swift orbiter peak well above the Eddington limits, suggesting highly beamed radiation in our direction from jets of stellar debris boosted to relativistic velocities.

Astrocrash.net » Resources » Catalogue of Possible Tidal Disruption Events

8

CATALOGUE OF POSSIBLE TIDAL DISRUPTION EVENTS

This table is intended to be a "catch-all" list of possible tidal disruption events (TDEs) that have been claimed over the years in the literature, even for events in which the favored interpretation is not a tidal disruption.

The table is a continual work in progress, and likely is missing a few events and may have a few mistakes. Please e-mail me if you'd like to add any missing events or correct any of the entries, or if you'd like to suggest ways that the catalogue can be improved.

					Search:	
Name(s)	Host Name(s)	Publications	Instruments	Redshift	Claimed Event Type	Notes
2MASX J0203	2MASX J02030314-0741514	Esquej et al. 2007*‡	2MASS, XMM-Newton, ROSAT	0.0615	TDE	Star-forming host, possibly pre-TDE AGN
2MASX J0249	2MASX J02491731-0412521	Esquej et al. 2007*‡	2MASS, XMM-Newton, ROSAT	0.0186	TDE	Star-forming host, possibly pre-TDE AGN
ASASSN-14ae	SDSS J110840.11+340552.2	Holoien et al. 2014*‡	LCOGT 1-m, LG 2-m, Swift	0.0436	TDE	Exponential decay
D1-9	GALEX J022517.0-043258	Gezari et al. 2008*‡	MegaCam (g, r, i, z), GALEX (NUV, FUV), Chandra, XMM-Newton‡, VLT*	0.326	TDE	
D3-13	GALEX J141929.8+525206	Gezari et al. 2006*‡, Gezari et al. 2008	MegaCam (g, r, i, z), GALEX (NUV, FUV), Keck*	0.3698	TDE	
D23H-1 Sop 7 11 2015	SDSS J233159.53+001714.5	Gezari et al. 2009*‡	GALEX (NUV, FUV)	0.1855	TDE	Star-forming host
Dougie	SDSS J120847.77+430120.1	Vinko et al. 2014*‡	ROTSE, HET	0.191	TDE	1 kpc off-center, super-Eddington, no emission lines.
GRB060218, SN2006ai	SDSS 1032139.69+165201.7	Campana et al. 2006* Shcherbakov	Swift (UVOT, XRT)	0.0335	WD + IMBH	

74

Coarch

What do TDEs teach us?

- Demography of low-mass, otherwise-dormant SMBHs
- SMBH growth
- Stellar dynamics around galactic nuclei
- Probes of relativistic effects (emission-line profiles or precession effects in the Kerr metrics)
- Accretion physics near the last stable orbit
- Formation and evolution of radio jets

We just entered the TDE real-time discovery era.

Sept 7-11, 2015

Ferrara PhD School

That's all Folk