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❏ Discovery of pulsed emission at 4.8 sec in Cen X–3
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❏ Pulsed emission due to rotation

Not disruption by centrifugal force implies

GM

R2
≥ Ω2
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❏ Pulsed emission due to rotation

Not disruption by centrifugal force implies

GM

R2
≥ Ω2

G
M

R3
≃ G〈ρ〉 ≥ Ω2

Ω =
2π

4.8
= 1.3 Hz ⇒ 〈ρ〉 ≥ 107 g/cm3



Portrait of an Accreting Binary Pulsar

Portrait of an Accreting

Binary Pulsars

Why AXPs Are

Important

Part I

Theory

Part II

A Real CRSF: the case of

MAXI J1409−619

Ferrara PhD School Accreting Systems / Spectral Ferrara, 09/09/2015

❏ Gravitational field of a Neutron Star

From the Newton law

F = G
mM

R2
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❏ Gravitational field of a Neutron Star

From the Newton law

F = G
mM

R2
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FEarth

=
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MEarth

×
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REarth

RNS

)2
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❏ Gravitational field of a Neutron Star

From the Newton law

F = G
mM

R2

FNS

FEarth

=
MNS

MEarth

×
(

REarth

RNS

)2

≃ 1010
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❏ Magnetic field of a Neutron Star

From the conservation of the magnetic flux for a solar type

star, with B ∼ 100 gauss, we have
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❏ Magnetic field of a Neutron Star

From the conservation of the magnetic flux for a solar type

star, with B ∼ 100 gauss, we have

100×
(

RSun

RSN

)2

≃ 1012 gauss
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Flux of Matter Falling from Stellar
Wind and/or Roche Lobe Overflow
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Wind and/or Roche Lobe Overflow

Interaction with theMagnetic Field
at theMagnetospheric Radius rmag
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Matter Deceleration
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Transport of X–Ray Radiation
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Plasma: Production of Intrinsic

Beaming Patterns
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Two types of AXPs according to their accretion regime

❏ disk-fed AXPs;

❏ wind-fed AXPs.
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❏ The Accretion Radius

All the matter swept by the NS inside a distance called “accretion

radius” will be captured and accreted.

ra =
2GMx

v2
rel

+ c2s
≈ 2GMx

v2
orb

+ v2win

whereMx is the neutron star mass, cs is the sound speed

(negligible because the wind matter is supersonic), and vorb and

vwin are the orbital and wind velocity, respectively.

We expect that the characteristic time scales in this “block” be

dynamical, of the order of 100–1000 s.
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❏ The Corotation Radius

In order for matter to be accreted it is necessary that the neutron

star does not rotate so fast that plasma is expelled because of the

centrifugal force. The distance at which there is balance between

these two forces is called corotation radius, defined as

rc =

(

GMx

Ω2
p

)1/3

= 1.5× 108 P 2/3m1/3 cm
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❏ The Magnetospheric Radius

At some distance from the neutron star surface, called

magnetospheric radius, the magnetic field of the neutron star

becomes the main interaction which drives the motion of the

captured matter toward the stellar surface. At this distance matter

is halted by the very strong magnetic field of the neutron star and

accretion can occur only if matter can penetrate the shock layer by

means of magneto-hydrodynamical instabilities.

From its definition, the magnetospheric radius will depend on the

magnetic field strength and the ram pressure of the accreted

matter
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rm =











5.1× 108 ξ2/7µ
4/7
30 m−1/7Ṁ16

−2/7
cm

2.9× 108 ξ2/7µ
4/7
30 m−1/7r

−2/7
6 ǫ

2/7
0.1L

−2/7
37 cm

where ξ . 1, µ30 is the dipolar magnetic moment in units of 1030

G cm3, Ṁ16 the mass accretion rate onto the neutron star in units

of 1016 g/s, r6 the neutron star radius in units of 106 cm, ǫ0.1 the

accretion efficiency in units of 0.1, and L37 the X–ray luminosity in

units of 1037 erg/s.

Because the main physical processes occurring in this “block” are

magneto-hydrodynamical instabilities, the characteristic time

scales will be 0.1–10 s.
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According to fastness of rotation, different kind of instabilities will

determine plasma penetration:

❏ Slow rotators: gravity-driven interchange Rayleigh-Taylor

instability

❏ Fast rotators: shear Kelvin-Helmholtz instability

fastness parameter: ωk ≡ Ωp/Ωk(rm), whereΩk is the angular

velocity of matter orbiting into Keplerian orbits.
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By comparing the two length scales, magnetospheric and

corotation radii, it is possible to distinguish two accretion regimes:

❏ rc & rm: the centrifugal force is smaller than the magnetic

force, and therefore matter can be accreted.

❏ rc . rm: centrifugal force inhibits matter from being

channeled and is swept away. This is the so-called propeller

regime.
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At low accretion rates pulsars enter a centrifugally inhibited state,

the so-called propeller state. BUT four pulsars show pulsation at low

luminosity.

Source Pspin L
‡
X Energy Mission Ref.

(s) (keV)

1A 0535+26 103.5 1.3 2–10 BeppoSAX Orlandini et al.

(2004)

4U 1145–619 290 5.9 0.5–2 Einstein Mereghetti

et al. (2006)

SAX J2103.5+4545 351 1.2 0.5–10 Chandra Reig et al.

(2014)

1A 1118–615 409 1.8 0.5–10 Chandra Rutledge et al.

(2007)

‡
10

33 erg/s
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At low accretion rates pulsars enter a centrifugally inhibited state,

the so-called propeller state. BUT four pulsars show pulsation at low

luminosity.

BeppoSAX observation of 4U0115+65: from quiescence to outburst

(Campana et al. 2001)
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Once matter has penetrated the magnetosphere, it will follow the

magnetic field lines up to the magnetic polar caps of the NS, where

it will be decelerated.

If the amount of matter falling on the polar caps is high enough

that a X–ray luminosity greater than about 1037 erg/s is reached,

then a radiative shock will form.

In this case an accretion column just above the polar cap will form;

this accretion column will be optically thick to X–rays, therefore

radiation will be emitted mainly sideways. Radiation is emitted

mainly in a direction perpendicular to the magnetic field lines and

we call this pattern “fan beam emission pattern”.
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On the other hand, if the X–ray luminosity is lower than about 1037

erg/s, then the radiative shock will not form and matter will be

able to reach the neutron star surface. In this case we will have the

formation of an emitting “slab” and radiation will be emitted

mainly in a direction parallel to the magnetic filed lines. We call

this pattern “pencil beam emission pattern”.

Because the main physical processes occurring in this “box” are

Compton heating and cooling, bremsstrahlung and Coulomb

interactions, the characteristic time scale will be. 0.001 s.
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Physics Time Scale

r > rmag Dynamics 100–1000 s

r ≃ rmag MHD Instability 0.1–10 s

r < rmag Compton H&C <0.001 s

Bremsstrahlung

Coulomb

A
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The electrons present in the magnetosphere will have an helicoidal

motion along the magnetic field lines, with gyromagnetic

(Larmor) frequency given by

ωc =
eB

γmc

where γ is the Lorenz factor. For the magnetic field strength B
expected in the NS magnetosphere, the motion of the electron in

the direction perpendicular to B is quantized in the so-called

Landau levels.



Region V: Emergent Spectrum

Portrait of an Accreting

Binary Pulsars

Why AXPs Are

Important

Part I

Theory

The Physics of AXPs

Region I: Outside the

B field interaction

Region II: Influence of

theB field

Region III: Plasma

Penetration

Region III: Inhibition

of Accretion

Region IV: Radiation

Production

Time Scales

Region V: Emergent

Spectrum

Cyclotron Resonance

Features

Observed CRSFs

The Continuum

Spectrum

Pulse Phase and Time

Resolved Spectroscopy

Part II

A Real CRSF: the case of

Ferrara PhD School Accreting Systems / Spectral Ferrara, 09/09/2015

In the non-relativistic case, the energy associated to each level is

given by

~ωn = n ~ωc

whereωc is the Larmor gyrofrequency.

As an aside, from this Eq. we have that En = 11.6 ·B12 keV, where

B12 is the magnetic field strength in units of 1012 gauss. Therefore

we expect to observe cyclotron features in the hard (E > 10 keV)

energy range.
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When relativistic corrections are taken into account a slight

anharmonicity is introduced in the Landau levels. Indeed, we have

~ωn = mc2
√

mc2 + 2n~ωc sin
2 θ − 1

sin2 θ

where θ is the angle between the line of sight and B.
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Another consequence of the existence of the Landau levels is that

an electromagnetic wave propagating in such a plasma will have

well defined polarization normal modes, i.e. the medium will be

birifringent.

If we introduce the complex refraction index N , with its real part

the geometric refraction index and with its imaginary part the

absorption coefficient, then the dispersion relation in the

non-relativistic case can be written as a bi-quadratic equation in

N . The solution forN will have the form

N2

1 ∝ 1

ω − ωc
N2

2 ∝ 1

ω + ωc
.

N1 extraordinary mode (right-handed circularly polarized)

N2 ordinary mode (left-handed circularly polarized)
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By introducing the complex refractive index is straightforward to

obtain the cyclotron absorption cross section. By means of the

optical theorem we obtain

σc ∝ αf |e1|2















δ(ω − ωc) Not relativistic

W 2

(ω − ωc) +W 2
Relativistic

whereαf = e2/~c is the fine structure constant, and ~e1 is the

polarization versor of the extraordinary wave.
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By introducing the complex refractive index is straightforward to

obtain the cyclotron absorption cross section. By means of the

optical theorem we obtain
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Once the electron absorbs a photon it (almost) immediately

de-excitates on a time scale

tr ∼ 2.6× 10−16B−1

12 s

This means that an absorbed photon is immediately re-emitted.

The absorption-emission process is therefore equivalent to a

scattering.

Photons with frequency close to ωc will be scattered out of the line

of sight, creating a drop in their number.

The cyclotron features are therefore NOT due to absorption

processes, but are due to scattering of photons resonant with the

magnetospheric electrons (as it occurs for the Fraunhofer lines in

the Solar spectrum).
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AXP with CRSFs

Source Pspin Ec

(sec) (keV)

1 Swift J1626.6-5156 15.37 10

2 XMMU J054134.7-682550 61.6 10 (2)

3 EXO 2030+375 41.8 11

4 GRO J1948+32 18.7 12.5

5 4U 0115+634 3.61 14 (5)

6 4U 1907+09 438 19 (2)

7 GS 1843+009 29.5 20

8 IGR J18179-1621 11.82 22?

9 4U 1538-52 529 22 (2)

10 2S 0114+650 10008 22 (2)

11 Vela X-1 283 25 (2)

12 V 0332+53 4.4 26 (3)

13 1H 2138+579 66.2 28

14 4U 0352+309 835 29

15 Cen X-3 4.84 30

AXP with CRSFs

Source Pspin Ec

(sec) (keV)

16 IGR J16493-4348 1069 30

17 RX J0520.5-6932 8.03533 31.5

18 XTE J0658-073 160.7 33

19 GX 1+4 138.17 34?

20 XTE J1946+274 15.8 36

21 OAO 1657-415 38 36?

22 4U 1626-67 7.7 37

23 Her X-1 1.24 41

24 MAXI J1409-619 506 44 (3)

25 GX 301-2 696 45

26 1A 0535+262 104 46 (2)

27 GX 304-1 272 51

28 1A 1118-615 405 55

29 GRO J1008-57 93.5 76

30 LMC X-4 13.5 100?
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Up to now, we worked neglecting both relativistic corrections and

thermal motions (cold plasma approximation). The release of the

latter condition allows an electron to absorb waves not only of

frequencyω = ωc, but in the intervalωc ±∆ωD, where the

Doppler width is given by

∆ωD = ωc

√

2kT

mc2
| cos θ|

whereT is the electron temperature (we assumed a

Maxwell-Boltzmann distribution for the electrons).



Doppler Broadening of the CRSF

Portrait of an Accreting

Binary Pulsars

Why AXPs Are

Important

Part I

Theory

The Physics of AXPs

Region I: Outside the

B field interaction

Region II: Influence of

theB field

Region III: Plasma

Penetration

Region III: Inhibition

of Accretion

Region IV: Radiation

Production

Time Scales

Region V: Emergent

Spectrum

Cyclotron Resonance

Features

Observed CRSFs

The Continuum

Spectrum

Pulse Phase and Time

Resolved Spectroscopy

Part II

A Real CRSF: the case of

Ferrara PhD School Accreting Systems / Spectral Ferrara, 09/09/2015



The Continuum Spectrum

Portrait of an Accreting

Binary Pulsars

Why AXPs Are

Important

Part I

Theory

The Physics of AXPs

Region I: Outside the

B field interaction

Region II: Influence of

theB field

Region III: Plasma

Penetration

Region III: Inhibition

of Accretion

Region IV: Radiation

Production

Time Scales

Region V: Emergent

Spectrum

Cyclotron Resonance

Features

Observed CRSFs

The Continuum

Spectrum

Pulse Phase and Time

Resolved Spectroscopy

Part II

A Real CRSF: the case of

Ferrara PhD School Accreting Systems / Spectral Ferrara, 09/09/2015

The main physical process responsible for the continuum emission

in AXPs is Compton scattering.

We will not enter into the details of the problem of repeated

scatterings in a finite, thermal medium. Let us only summarize

that an input photon of energyEi will emerge from a cloud of

non-relativistic electrons (at a temperatureT ) with an average

energyEf ∼ Ei e
y (this is valid in the regimeEf ≪ 4kT ).

The Comptonization parameter y therefore gives a measure of the

photon energy variation in traversing the plasma, and is given by
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y =























4kT

mc2
max (τ, τ 2) Nonrelativistic

(

4kT

mc2

)2

max (τ, τ 2) Relativistic

wheremax (τ , τ 2) is nothing else but the average number of

scattering suffered by the photons (τ is the optical depth of the

medium).

Note that ifEi < 4kT then photons can increase their energy at

the expense of the electrons: this is inverse Compton scattering.
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The detailed description of the spectrum of the emergent photons

requires the solution of the Kompaneets equation, but it is

possible to obtain qualitative information for special cases:

❏ y ≪ 1
In this case only coherent scattering is important, and the

emergent spectrum will be a blackbody spectrum or a

“modified” blackbody spectrum according whether the

photon frequency is lower or greater than the frequency at

which scattering and absorption coefficients are equal.
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The detailed description of the spectrum of the emergent photons

requires the solution of the Kompaneets equation, but it is

possible to obtain qualitative information for special cases:

❏ y ≪ 1
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The detailed description of the spectrum of the emergent photons

requires the solution of the Kompaneets equation, but it is

possible to obtain qualitative information for special cases:

❏ y ≫ 1
Inverse Compton scattering can be important. If we define a

frequencyωco such that y(ωco) = 1, then forω ≫ ωco the

inverse Compton scattering is saturated and the emergent

spectrum will show a Wien hump, due to low-energy photons

up-scattered up to ~ω ∼ 3kT . In the case in which there is

not saturation a detailed analysis of the Kompaneets

equation shows that the spectrum will have the form of a

power law modified by a high energy cutoff.
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The detailed description of the spectrum of the emergent photons

requires the solution of the Kompaneets equation, but it is

possible to obtain qualitative information for special cases:

❏ y ≫ 1
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From the analysis of the HEAO-1/A2 spectra of AXPs White et al.

found an empirical law that was able to fit their energy spectra

POHI(E) =







E−α E < Ecut

E−α exp

(

−E − Ecut

Ef

)

E > Ecut

It is evident that this model tries to simulate the unsaturated

inverse Compton process shown before.

But this model suffers the problem of a too abrupt break around

the cutoff energyEcut, so smoother cutoffs were introduced.
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❏ Fermi-Dirac cutoff

FDCO(E) =
1

1 + exp

(

E − Ecut

Ef

)

called Fermi-Dirac cutoff because of it resemblance with the

Fermi-Dirac distribution function. It is important to stress that the

FDCO model does not have any physical meaning: it only gives a

better description of the break in the AXP spectra.

Makishima and Mihara were the first to note that in the AXPs

showing CRFs there was a correlation between the cutoff energy

Ecut and the CRF energyEc, namelyEc ≃ (1.2− 2.5) · Ecut.
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Mihara introduced the so-called NPEX (Negative Positive

EXponential) model

NPEX(E) = (AE−α +BE+β) exp

(

− E

kT

)

.

It mimics the saturated inverse Compton spectrum shown before if

β = 2.

Furthermore, because the (non relativistic) energy variation of a

photon during Compton scattering is

∆E

E
=

4kT − E

mc2

then when E = Ec the medium is optically thick and therefore

Ec ∼ 4kT .
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From an observational point of view, AXP continua are described in

terms of

➣ a black-body component with temperature of a few hundred

eV;

➣ a power law of photon index ∼1 up to 10 keV;

➣ a high energy (>10 keV) cutoff that makes the spectrum

rapidly drop above 40–50 keV.
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From an observational point of view, AXP continua are described in

terms of

➣ a black-body component with temperature of a few hundred

eV;

➣ a power law of photon index ∼1 up to 10 keV;

➣ a high energy (>10 keV) cutoff that makes the spectrum

rapidly drop above 40–50 keV.

Problem: an ad hoc source of soft photons is required in order to fit

the low energy part of the spectrum.
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Becker & Wolff naturally derived the source of these soft photons

by taking into account the effect of bulk (or dynamical)

Comptonization in the accretion column.

In the case of a thermal Comptonization process, photons gain

energy via second-order Fermi acceleration because of the

incoherent, stochastic motion of the plasma.

In the accretion column the infalling electrons possess a preferred

motion: this implies that photons gain energy through first-order

Fermi acceleration.

The soft component comes out naturally from soft photons

produced by the “thermal mound” at the base of the accretion

column.
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Suzaku PPS of 4U 1538–52 (Hemphill et al. 2014. ApJ 792, 14)
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NuSTAR observations of Vela X–1 (Fürst et al. 2014, ApJ 780, 133).
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❏ Customary to rebin data to have at least 20 counts in each

bin.
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❏ Customary to rebin data to have at least 20 counts in each

bin.

Why? Because theχ2 distribution with k dof is the

distribution of a sum of the squares of k independent standard

normal random variables.



Rule I: Be careful with the rebinning

Portrait of an Accreting

Binary Pulsars

Why AXPs Are

Important

Part I

Theory

Part II

A Real CRSF: the case of

MAXI J1409−619

The PDS Spectrum

Rule I: Be careful with

the rebinning

The MECS+PDS

Spectrum

Other tests in support:

the run test

The Normalized Crab

Ratio

Rule II: Significance

supported by other

tests

Testing Statistical

Hypothesis

Testing the

Significance of a Line

Rule III: Be careful

when dealing with

linesFerrara PhD School Accreting Systems / Spectral Ferrara, 09/09/2015

❏ Customary to rebin data to have at least 20 counts in each

bin.

❏ Correct for spectra coming from not-background dominated

instruments.

Not necessary when the net source spectrum is obtained by

subtracting two high counts spectra.
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❏ Customary to rebin data to have at least 20 counts in each

bin.

❏ Correct for spectra coming from not-background dominated

instruments.

Not necessary when the net source spectrum is obtained by

subtracting two high counts spectra.
Normally distributed

because they result from the

difference of two normally

distributed χ2 variables.
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The run test, also known as Wald–Wolfowitz test, works on the

signs of the deviations, that is on the form of the residuals.

When fitting the 12 data points

with a straight line theχ2
ν is

exactly 1 (likely due to error

overestimation).

For a “good” fit we should

expect that the number of

points “above” the fitting line

should not group together, but

should be intermixed with

points “below” the fitting line

(and this should be more true

as the number of data points

increases).
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The run test, also known as Wald–Wolfowitz test, works on the

signs of the deviations, that is on the form of the residuals.

We have 12 points, 6 points

“above” the fitting line (let us

call them N+) and 6 points

“below” the fitting line (N
−

).

The number of runs Nr is only

3, suspiciously small. Indeed

the probability of obtaining

Nr ≤ 3 is 1.3%: the structure

observed in the residuals is not

due to random fluctuations.
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The run test, also known as Wald–Wolfowitz test, works on the

signs of the deviations, that is on the form of the residuals.

Up to 34 keV the residuals are

consistent with random

fluctuations at the 84%:

N+ = 12; N
−
= 9; Nr = 13.

On the other hand, in the

34–50 keV band we see a clear

structure in the residuals. In

this case we haveN+ = 2,

N
−
= 14, Nr = 2, so we we

can reject the null hypothesis

of randomness at the 99%

confidence level.
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The evaluation of the statistical significance of a CRSF must be

supported by other tests:

❏ In the presence of structures in the fit residuals the run test is

able to discriminate whether the structure is due to random

fluctuations or not.
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The evaluation of the statistical significance of a CRSF must be

supported by other tests:

❏ In the presence of structures in the fit residuals the run test is

able to discriminate whether the structure is due to random

fluctuations or not.

❏ A Crab Ratio can discriminate whether the feature is of

instrumental origin or is intrinsic to the source.
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1. Analyze the problem: identify the hypothesis and the

alternative hypothesis;
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1. Analyze the problem: identify the hypothesis and the

alternative hypothesis;

2. Choose a test statistics;
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1. Analyze the problem: identify the hypothesis and the

alternative hypothesis;

2. Choose a test statistics;

3. Compute the test statistics;
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1. Analyze the problem: identify the hypothesis and the

alternative hypothesis;

2. Choose a test statistics;

3. Compute the test statistics;

4. Determine the frequency distribution of the test statistic

under the hypothesis;
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1. Analyze the problem: identify the hypothesis and the

alternative hypothesis;

2. Choose a test statistics;

3. Compute the test statistics;

4. Determine the frequency distribution of the test statistic

under the hypothesis;

5. Make a decision using the distribution as a guide.
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The statistical assessment of a line present in a X–ray spectrum is

completely different whether it is in emission or in absorption.

The null hypothesis is the model without the line, to be tested

against the continuum plus line model.

❏ An emission line

Because the model is

ADDITIVE, we can use as test

statistic the∆χ2. By

comparing the∆χ2 obtained

from the simulations with the

one observed we can infer the

PCI of theχ2.
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The statistical assessment of a line present in a X–ray spectrum is

completely different whether it is in emission or in absorption.

The null hypothesis is the model without the line, to be tested

against the continuum plus line model.

❏ An emission line

We can form a statistic Fχ which follow theF -distribution with

Fχ =
∆χ2

χ2
ν

This is really a test of whether the coefficient of the new term is

zero. We can evaluate the PCI from the values ofP (Fχ, ν1, ν2).

This is the so-called (additive) F–test.
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The statistical assessment of a line present in a X–ray spectrum is

completely different whether it is in emission or in absorption.

The null hypothesis is the model without the line, to be tested

against the continuum plus line model.

❏ An emission line

Protassov et al. showed that we can obtain incorrect results if we

are testing a hypothesis that is on the boundary of the parameter

space. For an emission line we are in this case, and therefore the

F–test should not be used, but simulations should.
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The statistical assessment of a line present in a X–ray spectrum is

completely different whether it is in emission or in absorption.

The null hypothesis is the model without the line, to be tested

against the continuum plus line model.

❏ An absorption line

In xspec the absorption line that mimics a CRSF is modeled as a

MULTIPLICATIVE component:

CYCLABS(E) = exp

(

− −τ(WE/Ec)
2

(E − Ec)2 +W 2

)

GABS(E) = exp

[

− τ√
2πσ

exp

(

−(E − Ec)
2

2σ2

)]
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The statistical assessment of a line present in a X–ray spectrum is

completely different whether it is in emission or in absorption.

The null hypothesis is the model without the line, to be tested

against the continuum plus line model.

❏ An absorption line

Because theχ2 variables are NOT independent, and therefore the

additive property of theχ2-distribution is not valid anymore.

Said in other words, the SUM of independentχ2 variables is alsoχ2

distributed, but this is not true for the PRODUCT ofχ2 variables.
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The statistical assessment of a line present in a X–ray spectrum is

completely different whether it is in emission or in absorption.

The null hypothesis is the model without the line, to be tested

against the continuum plus line model.

❏ An absorption line

Therefore we cannot use the∆χ2 statistic as test statistic. We can

use the F-statistic from the ratio of variances

F =
χ2
ν1

χ2
ν2

This test is critically sensible to non-normality, therefore an

Anderson-Darling test should be executed.

By comparing theF obtained from the simulations with the

observed one we can determine the PCI of theχ2.



Rule III: Be careful when dealing with lines

Portrait of an Accreting

Binary Pulsars

Why AXPs Are

Important

Part I

Theory

Part II

A Real CRSF: the case of

MAXI J1409−619

The PDS Spectrum

Rule I: Be careful with

the rebinning

The MECS+PDS

Spectrum

Other tests in support:

the run test

The Normalized Crab

Ratio

Rule II: Significance

supported by other

tests

Testing Statistical

Hypothesis

Testing the

Significance of a Line

Rule III: Be careful

when dealing with

linesFerrara PhD School Accreting Systems / Spectral Ferrara, 09/09/2015

❏ We must choose the right test statistic when assessing the

significance of a line: while for an emission line is correct to

use the∆χ2 statistic, for an absorption line (a multiplicative

component in xspec) the appropriate statistic is the

F–statistic.
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Tomorrow we will talk about Timing Analysis. . .

so estote parati!
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Any observed data representing a physical phenomenon can be broadly classified as being either de-

terministic or nondeterministic. Deterministic data are those that can be described by an explicit mathe-

matical relationship. There are many physical phenomena in practice which produce data that can be

represented with reasonable accuracy by explicit mathematical relationships. For example, the motion

of a satellite in orbit about the Earth, the potential across a condenser as it discharges through the re-

sistor, the vibration response of an unbalanced rotating machine, or the temperature of water as heat is

applied, are all basically deterministic. However, there are many other physical phenomena which pro-

duce data that are not deterministic. For example, the height of waves in a confused sea, the acoustic

pressure generated by air rushing through a pipe, or the electrical output of a noise generator represent

data which cannot be described by explicit mathematical relationships. There is no way to predict an

exact value at a future instant of time. These data are random in character and must be described in

terms of probability statements and statistical averages rather than explicit equations.

Various special classifications of deterministic and random data will now be discussed.
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1.1 Deterministic Data

Data representing deterministic phenomena can be categorized as being either periodic or non periodic.

Periodic data can be further categorized as being either sinusoidal or complex periodic. Non periodic data

can be further categorized as being either almost-periodic or transient. These various classifications of

deterministic data are schematically illustrated in Figure 1.1. Of course, any combination of these forms

may also occur. For purposes of review, each of these types of deterministic data, along with physical

examples, will be briefly discussed.

1.1.1 Sinusoidal Periodic Data

Sinusoidal data are those types of periodic data which can be defined mathematically by a time-varying

function of the form

x(t) = X sin(ω0t + ϕ) (1.1)
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Deterministic

Periodic Non Periodic

Sinusoidal Complex
Sinusoidal

Almost
Periodic Transient

Figure 1.1: Classification of deterministic data

whereX is the amplitude,ω0 is the angular frequency, in units of radians per unit time1,ϕ is the initial

phase angle (in radians) with respect to the time origin, andx(t) is the instantaneous value at time t. The

sinusoidal time history described by (1.1) is usually referred as a sine wave. When analyzing sinusoidal

data in practice, the phase angleϕ is often ignored.

The time interval required for one full fluctuation or cycle of sinusoidal data is called the periodT . The

number of cycles per unit time is called the frequency ν.
1Not to be confused with the frequency ν, measured in Hz. The two are related byω = 2πν.



M.Orlandini Temporal Data Analysis 5

There are many example of physical phenomena which produce approximately sinusoidal data in prac-

tice. The voltage output of an electrical alternator is one example; the vibratory motion of an unbal-

anced rotating weight is another. Sinusoidal data represent one of the simplest forms of time-varying

data from the analysis viewpoint.

1.1.2 Complex Periodic Data

Complex periodic data are those type of periodic data which can be defined mathematically by a time-

varying function whose waveform exactly repeats itself at regular intervals such that

x(t) = x(t± nT ) n = 1, 2, 3, . . . (1.2)

As for sinusoidal data, the time interval required for one full fluctuation is called the period T . The an-

gular frequency is called the fundamental frequencyω. With few exceptions in practice, complex periodic

data may be expanded into a Fourier series according to the following formula (we will return later in
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greater detail on that)

x(t) =

∞∑
k=0

(Ak cosωkt + Bk sinωkt) (1.3)

withωk = 2πk/T andB0 = 0. An alternative way to express the Fourier series is

x(t) = X0 +

∞∑
k=1

Xk cos(ωkt + ϕk) (1.4)

In other words, (1.4) says that complex periodic data consists of a static component and an infinite num-

ber of sinusoidal components called harmonics, which have amplitudesXk and phasesϕk. The frequen-

cies of the harmonic components are all integral multiples ofω1.

Physical phenomena which produce complex periodic data are far more common than those which pro-

duce simple sinusoidal data. In fact, the classification of data as being sinusoidal is often only an ap-

proximation for data which are actually complex. For example, the voltage output from an electrical

alternator may actually display, under careful inspection, some small contributions at higher harmonic
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frequencies. In other cases, intense harmonic components may be present in periodic physical data.

1.1.3 Almost-Periodic Data

We have seen that periodic data can be generally reduced to a series of sine waves with commensurately

related frequencies. Conversely, the data formed by summing two or more commensurately related sine

waves will be periodic. However, the data formed by summing two or more sine waves with arbitrary

frequencies will not be periodic.

More specifically, the sum of two or more sine waves will be periodic only when the ratios of all possible

pairs of frequencies form rational numbers. This indicates that a fundamental period exists which will

satisfy the requirements of (1.2). Hence,

x(t) = X1 sin(2t + ϕ1) + X2 sin(3t + ϕ2) + X3 sin(7t + ϕ3)

is periodic since 2/3, 2/7 and 3/7 are rational numbers (the fundamental period isT = 1). On the other
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hand,

x(t) = X1 sin(2t + ϕ1) + X2 sin(3t + ϕ2) + X3 sin(
√

50t + ϕ3)

is not periodic since 2/
√

50 and 3/
√

50 are not rational numbers (in this case the fundamental period

is infinitely long). The resulting time history in this case will have an “almost periodic” character, but the

requirement of (1.2) will not be satisfied for any finite value ofT .

Based on these discussions, almost periodic data are those types of non periodic data which can be de-

fined mathematically by a time-varying function of the form

x(t) =

∞∑
k=1

Xk sin(ωkt + ϕk) (1.5)

with ωj/ωk 6= rational numbers in all cases. Physical phenomena producing almost periodic data fre-

quently occur in practice when the effects of two or more unrelated periodic phenomena are mixed. A

good example is the vibration response in a multiple engine propeller airplane when the engines are

out of synchronization.
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1.1.4 Transient Non periodic Data

Transient data are defined as all non periodic data other the almost-periodic discussed above. In other

words, transient data include all data not previously discusses which can be described by some suitable

time-varying function.

Physical phenomena which produce transient data are numerous and diverse. For example, the behav-

ior of the temperature of water in a kettle (relative to room temperature) after the flame is turned off.

1.2 Random Data

Data representing a random physical phenomenon cannot be described by an explicit mathematical

relationship because each observation of the phenomenon will be unique. In other words, any given

observation will represent only one of the many possible results which might have occurred. For exam-

ple, assume the output voltage from a thermal noise generator is recordered as a function of time. A
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specific voltage time history record will be obtained. However, if a second thermal noise generator of

identical construction and assembly is operated simultaneously, a different voltage time history record

would result. In fact, every thermal noise generator which might be constructed would produce a dif-

ferent voltage time history record. Hence the voltage time history for any one generator is merely one

example of an infinitely large number of time histories which might be occurred.

A single time history representing a random phenomenon is called a sample function (or a sample record

when observed over a finite time interval). The collection of all possible sample functions which the

random phenomenon might have produced is called a random process or a stochastic process. Hence a

sample record of data for a random physical phenomenon may be though of as one physical realization

of a random process.

Random processes might be categorized as being either stationary or non stationary. Stationary random

processes may be further categorized as being either ergodic or non ergodic. Non stationary random pro-

cesses may be further categorized in terms of specific types of non stationary properties. These various
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Random

Stationary Non
Stationary

Ergodic Non Ergodic Special classifications
of non stationarity

Figure 1.2: Classifications of random data

classifications of random processes are schematically illustrated in Figure 1.2. The meaning and physical

significance of these various types of random processes will now be discussed in broad terms.

1.2.1 Stationary Random Processes

When a physical phenomenon is considered in terms of a random process, the properties of the phe-

nomenon can hypothetically be described at any instant of time by computing average values over the

collection of sample functions which describe the random process. For example, consider the collection
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of sample functions (also called the ensemble) which form the random process illustrated in Figure 1.3.

The mean value (first moment) of the random process at some time t1 can be computed by taking the

instantaneous value of each sample function of the ensemble at time t1, summing the values, and di-

viding by the number of sample functions. In a similar manner, a correlation (joint moment) between

the values of the random process at two different times (called autocorrelation function) can be computed

by taking the ensemble average of the product of instantaneous values at two times, t1 and t1 + τ . That

is, for the random process {x(t)}, where the symbol { } is used to denote an ensemble of sample func-

tions, the mean valueµx(t1) and the autocorrelation functionRx(t1, t1 + τ ) are given by

µx(t1) = lim
N→∞

1

N

N∑
k=1

xk(t1) (1.6a)

Rx(t1, t1 + τ ) = lim
N→∞

1

N

N∑
k=1

xk(t1)xk(t1 + τ ) (1.6b)

where the final summation assumes each sample function is equally likely.
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For the general case whereµx(t1) andRx(t1, t1 + τ ) defined in (1.6) vary as time t1 varies, the random

process{x(t)} is said to be non stationary. For the special case whereµx(t1) andRx(t1, t1+τ ) do not vary

as time t1 varies, the random process{x(t)} is said to be weakly stationary or stationary in the wide sense.

For the weakly stationary processes, the mean value is a constant and the autocorrelation function is

dependent only upon the time of displacement τ . That is,µx(t1) = µx andRx(t1, t1 + τ ) = Rx(τ ).

An infinite collection of higher order moments and joint moments of the random process {x(t)} could

also be computed to establish a complete family of probability distribution functions describing the

process. For the special case where all possible moments and joint moments are time invariant, the

random process{x(t)} is said to be strongly stationary or stationary in the strict sense. For many practical

applications, verification of weak stationarity will justify an assumption of strong stationarity.
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Figure 1.3: Ensemble of sample functions forming a random process
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1.2.2 Ergodic Random Processes

The previous section discusses how the properties of a random process can be determined by computing

enable averages at specific instants of time. In most cases, however, it is also possible to describe the

properties of a stationary random process by computing time averages over specific sample functions

in the ensemble. For example, consider the k-th sample function of the random process illustrated in

Figure 1.3. The mean valueµx(k) and the autocorrelation functionRx(τ, k) of thek-th sample function

are given by

µx(k) = lim
N→∞

1

N

∫ T

0

xk(t)dt (1.7a)

Rx(τ, k) = lim
N→∞

1

N

∫ T

0

xk(t)xk(t + τ )dt (1.7b)

If the random process {x(t)} is stationary, and µx(k) and Rx(τ, k) defined in (1.7) do not differ when

computed over different sample functions, the random process is said to be ergodic. For ergodic ran-
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dom processes, the time averaged mean value and autocorrelation function (as well as all other time-

averaged properties) are equal to the corresponding ensemble averaged value. That is,µx(k) = µx and

Rx(τ, k) = Rx(τ ). Note that only stationary random process can be ergodic.

Ergodic random processes are clearly an important class of random processes since all processes of er-

godic random processes can be determined by performing time averages over a single sample func-

tion. Fortunately, in practice, random data representing stationary physical phenomena are generally

ergodic. It is for this reason that the properties of stationary random phenomena can be measured prop-

erly, in most cases, from a single observed time history record.

1.2.3 Non stationary Random Processes

Non stationary random processes include all random processes which do not meet the requirements

for stationarity defined in the previous section. Unless further restrictions are imposed, the properties

of non stationary random processes are generally time-varying functions which can be determined only



M.Orlandini Temporal Data Analysis 17

by performing instantaneous averages over the ensemble of sample functions forming the process. In

practice, it is often not feasible to obtain a sufficient number of sample records to permit the accurate

measurement of properties by ensemble averaging. This fact has tended to impede the development of

practical techniques for measuring and analyzing non stationary random data.

In many cases, the non stationary random data produced by actual physical phenomena can be classi-

fied into special categories of non stationarity which simplify the measurement and analysis problem.

For example, some type of random data might be described by a non stationary random process {y(t)}

where each sample function is given by y(t) = A(t)x(t). Herex(t) is a sample function from a station-

ary random process {x(t)} and A(t) is a deterministic multiplication factor. In other words, the data

might be represented by a non stationary random process consisting of a sample functions with a com-

mon deterministic time trend. If non stationary random data fit a specific model of this type, ensemble

averaging is not always needed to describe the data. The various desired properties can sometimes be

estimated from a single record, as is true for ergodic stationary data.



Harmonic Analysis
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Few preliminary remarks are in order: First, we will use the angular frequency ω when we refer to the

frequency domain. The unit of the angular frequency is radians/second (or simpler s−1). It is easily con-

verted to the frequency ν (unit in Hz) using the following equation:

ω = 2πν

Second: just let us remember the definition of even and odd functions.

Definition 2.1 (Even and odd functions). A function is said to be even if

f (−t) = f (t) even function

while a function is said to be odd if

f (−t) = −f (t) odd function

Any function can be described in terms of a mixture of even and odd functions, by means of the following
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t

f(t)

even

t

f(t)

odd

t

f(t)

mixed =

t

f(t)

even +

t

f(t)

odd

Figure 2.1: Examples of even, odd and mixed functions

decomposition (see Figure 2.1):

feven =
f (t) + f (−t)

2

fodd =
f (t)− f (−t)

2
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2.1 Fourier Series

This Section will deal with the mapping of periodic functions to a series based on the trigonometric func-

tions sine (and odd function) and cosine (even function).

2.1.1 Definition

Any periodic function f (t) can be expanded into a series of trigonometric function, the so called Fourier

series, as follows
Definition 2.2 (Fourier series).

f (t) =

∞∑
k=0

(Ak cosωkt + Bk sinωkt) withωk =
2πk

T
, B0 = 0 (2.1)

T is the period of the function f (t). The amplitudes or Fourier coefficientsAk andBk are determined in

such a way that the infinite series is identical with the function f (t). Equation (2.1) therefore tells us
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that any periodic function can be represented as a superposition of sine-function and cosine-function

with appropriate amplitudes – with an infinite number of terms, if need be – yet using only precisely

determined frequencies:

ω = 0,
2π

T
,

4π

T
,

6π

T
, . . .

2.1.2 Calculation of the Fourier Coefficients

Before we compute the expressions of the Fourier coefficients, we need some tools. In all following inte-

grals we integrate from−T/2 to +T/2, meaning over an interval with the periodT that is symmetrical

to t = 0. We could also pick any other interval, as long as the integrand is periodic with period T and

gets integrated over a whole period. The letters n and m in the formulas below are natural numbers

0, 1, 2, . . . Let's have a look at the following
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∫ +T/2

−T/2
cosωnt dt =


0 forn 6= 0

T forn = 0

(2.2)

∫ +T/2

−T/2
sinωnt dt = 0 (2.3)

This results from the fact that the areas on the positive half-plane and the ones on the negative one can-

cel out each other, provided we integrate over a whole number of periods. Cosine integral for n = 0

requires special treatment, as it lacks oscillations and therefore areas can't cancel out each other: there

the integrand is 1, and the area under the horizontal line is equal to the width of the intervalT . Further-

more, we need the following trigonometric identities:
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cosα cos β =
1

2
[cos(α− β) + cos(α + β)]

sinα sin β =
1

2
[cos(α− β)− cos(α + β)]

sinα cos β =
1

2
[sin(α− β) + sin(α + β)]

(2.4)

Using these identities we can demonstrate that the system of basis functions consisting of (sinωkt, cosωkt)

with k = 0, 1, 2, . . . is an orthogonal system. This means that
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∫ +T/2

−T/2
cosωnt cosωmt dt =


0 forn 6= m

T/2 forn = m 6= 0

T forn = m = 0

(2.5)

∫ +T/2

−T/2
sinωnt sinωmt dt =


0 forn 6= m, n = 0, m = 0

T/2 forn = m 6= 0

(2.6)

∫ +T/2

−T/2
sinωnt cosωmt dt = 0 (2.7)

Please note that our basis system is not an orthonormal system, i.e. the integrals for n = m are not nor-

malized to 1. What's even worse, the special case of n = m = 0 in (2.5) is a nuisance, and will keep

bugging us again and again.

Using the above orthogonality relations, we are able to calculate the Fourier coefficients straight away.

We need to multiply both sides of (2.1) by cosωkt and integrate from−T/2 to +T/2. Due to the or-
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thogonality, only terms with k = k′ will remain; the second integral will always disappear. This gives

us:

Ak =
2

T

∫ +T/2

−T/2
f (t) cosωkt dt for k 6= 0 (2.8)

A0 =
1

T

∫ +T/2

−T/2
f (t) dt (2.9)

Please note the prefactors 2/T or 1/T , respectively, in (2.8) and (2.9). Equation (2.9) simply is the aver-

age of the function f (t). Now let's multiply both sides of (2.1) by sinωkt and integrate from−T/2 to

+T/2. We now have:

Bk =
2

T

∫ +T/2

−T/2
f (t) sinωkt dt for all k (2.10)

Equations (2.8) and (2.10) may also be interpreted like: by weighting the function f (t) with cosωkt or

sinωkt, respectively, we “pick” the spectral components from f (t), when integrating, corresponding to

the even or odd components, respectively, of the frequencyωk.
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Ex. 2.1 Calculation of Fourier coefficients: Constant and triangular functions

Run the Fourier applet
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Figure 2.2: The triangular function and consecutive approximations by a Fourier series with more and more terms
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2.1.3 Fourier Series and Music

While listening to music, we are able to clearly distinguish the sound produced by different instruments.

The sound coming from a flute is quite different from the sound coming from a violin, even if they play

the same note2.

In musical terms, this difference is called timbre and it was von Helmholtz, in the second half of the XIX

century, who understood that (von Helmholtz H. 1885. “On the sensations of tone as a physiological basis for

the theory of music”)

“Each vibratory motion of the air in the ear canal, corresponding to a musical sound, can always be uniquely

regarded as the sum of a number of vibratory movements.”

or, in mathematical terms, the timbre can be easily explained in terms of Fourier decomposition of the

signal.
2In general terms, we call pitch of a sound the “perceived” frequency of a musical note, and it is related to amount of Fourier frequencies we (that is, our ears) are able to distin-

guish.
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Figure 2.3: Comparison of a Fourier decomposition of a musical signal played by different instruments. On the abscissa we list the Fourier frequency
index k, while the Y axis shows the power, in dB, emitted in the single harmonics (from Olson H.F., “Music, Physics and Engineering”).

Indeed, if we apply Eq. (2.1) and extract the Fourier coefficients for various instruments we will obtain

something like shown in Figure 2.3: it is evident that the harmonic content of different instruments is

quite different.

For example, for the violin we have that the first Fourier frequencies are quite intense (and the brilliance

of the violin sound is due the fact that these harmonics peak in the region where our ear is more sensi-
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tive). On the other hand, for the clarinet (here in the chalumeau registry) the even harmonics are quite

faint, giving raise to its characteristic “hollow” sound. The typical metallic sound of the trumpet is due

to the presence of very high harmonics, beyond the 21st.

It is interesting to observe that the harmonic content is different not only for different instruments play-

ing the same note, but also for the same note played by the same instrument (the La played by a violin

on the La string (not fingered) and the La played on the Re string (fingered)), or the same note played in

different octaves. As an example, in Figure 2.4 we show the harmonic content of all the Do's in the piano.

Note how the lack of harmonics in the higher Do's, like Do6 and Do7, makes them an almost “pure sound”.

Furthermore, for the Do1 we can notice that the fundamental frequency and the lower harmonics are

fainter than the harmonics between the 10th and the 15th. Despite this, our ears recognize the sound as

a Do1. This phenomenon is called “virtual pitch”, and it is the demonstration that our brain is a “Fourier

analyzer”.

Our brain is therefore able to decompose an acoustic signal in its Fourier components, and is able to
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Figure 2.4: Comparison of Fourier decomposition of different Do's played by a piano, from the left to the right of the keyboard. Note that for the Do1
the fundamental and the lower harmonics are fainter than the higher ones, therefore the pitch is somewhat “virtual”, while the lack of harmonics in
Do6 and Do7 makes them an almost pure sound.
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Figure 2.5: Effects of phase shifts among harmonics in a complex signal: Left: a square wave obtained by summing the first 21 harmonics all in phase
among each other. Central: harmonics shifted byπ/2. Right: random shift.

perceive each of them, independently of their phase relationships. In this perspective, the sentence that

Leibniz’ wrote in a letter to Christian Goldbach on April 17, 1712 was prophetic: “Musica est exercitium arith-

meticæ occultum nescientis se numerare animi”3.

The fact that the human brain is not able to perceive phase differences among harmonics is very im-

portant: indeed, the timbre of an instrument would change during the emission of a sound because of

the different velocities of the harmonics along a string. To illustrate this phenomenon, in Figure 2.5 we

show a square wave obtained by summing the first 21 harmonics, all in phase among each other. In the
3Music is a hidden arithmetic exercise of the soul, which does not know that it is counting.
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central panel we show the shape of the wave obtained by introducing a phase shift of π/2, while in the

right panel the shift is random. While the wave shapes are completely different, if the signals are sent

to a loudspeaker they are indistinguishable to the human ear.

2.1.4 Fourier Series in Complex Notation

In (2.1) the index k starts from 0, meaning that we will rule out negative frequencies in our Fourier se-

ries. The cosine terms didn't have a problem with negative frequencies. The sign of the cosine argument

doesn't matter anyway, so we would be able to go halves as far as the spectral intensity at the positive

frequency kωwas concerned:−kω and kωwould get equal parts, as shown in Figure 2.6. As frequency

ω = 0 (a frequency as good as any other frequencyω 6= 0) has no “brother”, it will not have to go halves.

A change of sign for the sine-terms arguments would result in a change of sign for the corresponding

series term. The splitting of spectral intensity like “between brothers” (equal parts of−ωk and +ωk now

will have to be like “between sisters”: the sister for−ωk also gets 50%, but hers is minus 50%!
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Figure 2.6: Plot of the “triangular function” Fourier frequencies: Top: Only positive frequencies; Bottom: Positive and negative frequencies.
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Instead of using (2.1) we might as well use:

f (t) =

+∞∑
k=−∞

(A′k cosωkt + B′k sinωkt) (2.11)

where, of course, the following is true: A′−k = A′k,B′−k = −B′k. The formulas for the computation of

A′k andB′k for k > 0 are identical to (2.8) and (2.10), though the lack the extra factor 2. Equation (2.9)

forA0 stays unaffected by this. This helps us avoid to provide a special treatment for the constant term.

Now we're set and ready for the introduction of complex notation. In the following we'll always assume

that f (t) is a real function. Generalizing this for complex f (t) is no problem. Our most important tool

is Euler identity:

eiαt = cosαt + i sinαt (2.12)

where i is the imaginary unit (i2 = −1). This allows us to rewrite the trigonometric functions as
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cosαt =
1

2
(eiαt + e−iαt)

sinαt =
1

2i
(eiαt − e−iαt)

(2.13)

Inserting these relations into (2.1) we obtain

f (t) = A0 +

∞∑
k=1

(
Ak − iBk

2
eiωkt +

Ak + iBk

2
e−iωkt

)
(2.14)

If we define

C0 = A0

Ck =
Ak − iBk

2

C−k =
Ak + iBk

2
, k = 1, 2, 3, . . .

(2.15)

we finally get
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f (t) =

∞∑
k=−∞

Cke
iωkt ωk =

2πk

T
(2.16)

NowCk can be formulated in general terms as

Ck =
1

T

∫ +T/2

−T/2
f (t) e−iωkt dt for k = 0,±1,±2, . . . (2.17)

Please note that there is a negative sign in the exponent. Please also note that the index k runs from

−∞ to +∞ forCk, whereas it runs from 0 to +∞ forAk andBk.

2.1.5 Partial Sums, Parseval Equation

For practical work, infinite Fourier series have to get terminated at some stage, regardless. Therefore, we

only use a partial sum, say until we reach kmax = N . ThisN th partial sum then is:

SN =

N∑
k=0

(Ak cosωkt + Bk sinωkt) (2.18)
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Terminating the series results in the following squared error:

δ2
N =

1

T

∫
T

[f (t)− SN(t)]2 dt (2.19)

TheT below the integral symbol means integration over a full period. This definition will become plau-

sible in a second if we look at the discrete version:

δ2
N =

1

T

N∑
j=0

(fj − sj)2 (2.20)

Please note that we divide by the length of the interval, to compensate for integrating over the interval

T . Now we know that the following is correct for the infinite series:

lim
N→∞

SN =

∞∑
k=0

(Ak cosωkt + Bk sinωkt) (2.21)

provided theAk andBk happen to be the Fourier coefficients. Does this also have to be true for theN th

partial sum? Isn't there a chance the mean squared error would get smaller, if we used other coefficients
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instead of Fourier coefficients? That's not the case! To prove it, we'll now insert (2.18) and (2.19) in (2.21),

leave out limN→∞ and get:

δ2
N =

1

T

{∫
T

f 2(t) dt− 2

∫
T

f (t)SN(t) dt +

∫
T

S2
N(t) dt

}
=

1

T

{∫
T

f 2(t) dt

−2

∫
T

∞∑
k=0

(Ak cosωkt + Bk sinωkt)

N∑
k=0

(Ak cosωkt + Bk sinωkt) dt

+

∫
T

N∑
k=0

(Ak cosωkt + Bk sinωkt)

N∑
j=0

(Aj cosωjt + Bj sinωjt) dt


=

1

T

{∫
T

f 2(t) dt− 2TA2
0 − 2

T

2

N∑
k=1

(A2
k + B2

k) + TA2
0 +

T

2

N∑
k=1

(A2
k + B2

k)

}

=
1

T

∫
T

f 2(t) dt− A2
0 −

1

2

N∑
k=1

(A2
k + B2

k) (2.22)
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Here, we made use of the somewhat cumbersome orthogonality properties (2.5), (2.6) and (2.7). As the

A2
k andB2

k always are positive, the mean squared error will drop monotonically whileN increases.

Ex. 2.2 Approximating the triangular function

As δ2
N is always positive, we finally arrive from (2.22) at the Bessel inequality

1

T

∫
T

f 2(t) dt ≥ A2
0 +

1

2

N∑
k=1

(A2
k + B2

k) (2.23)

For the border-line case ofN →∞we get the Parseval equation:

1

T

∫
T

f 2(t) dt = A2
0 +

1

2

∞∑
k=1

(A2
k + B2

k) (2.24)

Parseval equation may be interpreted as follows: 1/T
∫
f 2(t) dt is the mean squared “signal” within the

time domain, or – more colloquially – the information content. Fourier series don't lose this information

content: it's in the squared Fourier coefficients.
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2.2 Continuous Fourier Transformation

Contrary to Section 2.1, here we won't limit things to periodic f (t). The integration interval is the en-

tire real axis (−∞,+∞). For this purpose we'll look at what happens at the transition from a series-

representation to an integral-representation:

Series: Ck =
1

T

∫ +T/2

−T/2
f (t) e−iωkt dt

Continuous: lim
T→∞

(TCk) =

∫ +∞

−∞
f (t) e−iωt dt

2.2.1 Definition

Let us define the Forward Fourier Transformation and the Inverse Fourier Transformation as follows:
Definition 2.3 (Forward Fourier transformation).

F (ω) =

∫ +∞

−∞
f (t)e−iωt dt (2.25)
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Definition 2.4 (Inverse Fourier transformation).

f (t) =
1

2π

∫ +∞

−∞
F (ω)e+iωt dω (2.26)

Please note that in the case of the forward transformation, there is a minus sign in the exponent (cf.

(2.17)), in the case of the inverse transformation, this is a plus sign. In the case of the inverse transforma-

tion, 1/2π is in front of the integral, contrary to the forward transformation.

The asymmetric aspect of the formulas has tempted many scientists to introduce other definitions, for

example to write a factor 1/
√

2π for forward as well as inverse transformation. That's no good, as the

definition of the averageF (0) =
∫ +∞
−∞ f (t) dtwould be affected.

Now let us demonstrate that the inverse transformation returns us to the original function. For the for-

ward transformation, we often will use FT(f (t)), and for the inverse transformation we will use FT−1(F (ω)).

We will begin with the inverse transformation and insert:
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Proof.

f (t) =
1

2π

∫ +∞

−∞
F (ω) eiωt dω =

1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f (t′) e−iωt

′
eiωt dt′

=
1

2π

∫ +∞

−∞
f (t′) dt′

∫ +∞

−∞
ei(t−t

′)ω dω

=

∫ +∞

−∞
f (t′) δ(t− t′) dt′ = f (t)

where δ(t) is the Dirac δ-function4.

Note that for f (t) = 1 we have

FT(δ(t)) = 1

FT−1(1) = 2πδ(ω)

(2.27)

We realize the dual character of the forward and inverse transformations: a very slowly varying function

f (t) will have a very high spectral density for very small frequencies; the spectral density will go down
4The δ-function is actually a distribution. Its value is zero anywhere except when its argument is equal to zero. In this case it is∞.
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quickly and rapidly approaches 0. Conversely, a quickly varying function f (t) will show spectral density

over a very wide frequency range.

Now let us discuss an important example: the Fourier transform of the “rectangular” function (see Sec-

tion 2.3.1 for a detailed discussion)

f (t) =


1 for − T/2 ≤ t ≤ +T/2

0 else

Its Fourier transform is

F (ω) = 2

∫ +T/2

0

cosωt dt = T
sinωT/2

ωT/2
(2.28)

The imaginary part is 0, as f (t) is even. The Fourier transformation of a rectangular function, therefore,

is of the type sinx/x. Some authors use the expression sinc(x) for this case. The “c” stands for cardinal.

The functions f (t) andF (ω) are shown in Figure 2.7.
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Figure 2.7: The rectangular function (left) and its Fourier transform sinc(x) (right)

Ex. 2.3 Fourier transformation of relevant functions: Gaussian, bilateral ex-
ponential, unilateral exponential

2.2.2 Convolution, Parseval Theorem

2.2.2.1 Convolution

The convolution of a function f (t) with another function g(t) is defined as:
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Definition 2.5 (Convolution).

h(t) =

∫ +∞

−∞
f (ξ) g(t− ξ) dξ ≡ f (t)⊗ g(t) (2.29)

Please note that there is a minus sign in the argument ofg(t). The convolution is commutative, distribu-

tive, and associative. This means

commutative: f (t)⊗ g(t) = g(t)⊗ f (t)

distributive: f (t)⊗ (g(t) + h(t)) = f (t)⊗ g(t) + f (t)⊗ h(t)

associative: f (t)⊗ (g(t)⊗ h(t)) = (f (t)⊗ g(t))⊗ h(t)

As an example of convolution, let us take a pulse that looks like an unilateral exponential function
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f (t) =


e−t/τ for t ≥ 0

0 else
(2.30)

Any device that delivers pulses as a function of time, has a finite rise-time/decay-time, which for sim-

plicity's sake we'll assume to be a Gaussian

g(t) =
1

σ
√

2π
exp

(
−1

2

t2

σ2

)
(2.31)

That is how our device would represent a δfunction – we can't get sharper than that. The function g(t),

therefore, is the device's resolution function, which we'll have to use for the convolution of all signals we

want to record. An example would be the bandwidth of an oscilloscope. We then need:

S(t) = f (t)⊗ g(t) (2.32)

where S(t) is the experimental, smeared signal. It's obvious that the rise at t = 0 will not be as steep,
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and the peak of the exponential function will get “ironed out”. We'll have to take a closer look:

S(t) =
1

σ
√

2π

∫ +∞

0

e−ξ/τ exp

(
−1

2

(t− ξ)2

σ2

)
dξ

=
1

σ
√

2π
exp

(
−1

2

t2

σ2

)∫ +∞

0

exp

[
−ξ
τ

+
tξ

σ2
− 1

2

ξ2

σ2

]
dξ

=
1

σ
√

2π
exp

(
−1

2

t2

σ2

)
exp

(
1

2

t2

σ2

)
exp

(
− t
τ

)
exp

(
σ2

2τ 2

)
×∫ +∞

0

exp

{
− 1

2σ2

[
ξ −

(
t− σ2

τ

)]2
}
dξ

=
1

σ
√

2π
exp

(
− t
τ

)
exp

(
σ2

2τ 2

)
×∫ +∞

−(t−σ2/τ)

exp

(
−1

2

ξ′2

σ2

)
dξ′ with ξ′ = ξ −

(
t− σ2

τ

)
=

1

2
exp

(
− t
τ

)
exp

(
σ2

2τ 2

)
erfc

(
σ

τ
√

2
− t

σ
√

2

)

(2.33)

Here, erfc(x) = 1− erf(x) is the complementary error function, where
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erf(x) =
2√
π

∫ x

0

e−t
2
dt (2.34)

Figure 2.8 shows the result of the convolution of the exponential function with the Gaussian. The fol-

lowing properties immediately stand out: (i) The finite time resolution ensures that there is also a signal

at negative times, whereas it was 0 before convolution. (ii) The maximum is not at t = 0 any more. (iii)

What can't be seen straight away, yet is easy to grasp, is the following: the center of gravity of the expo-

nential function, which was at t = τ , doesn't get shifted at all upon convolution.

Now we prove the extremely important Convolution Theorem:
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Figure 2.8: Result of the convolution of an unilateral exponential function with a Gaussian. The exponential function without convolution is indicated
with the thin line

Theorem 2.1 (Convolution theorem). Let be

f (t)↔ F (ω)

g(t)↔ G(ω)

Then

h(t) = f (t)⊗ g(t)↔ H(ω) = F (ω)×G(ω) (2.35)
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The convolution integral becomes, through Fourier transformation, a product of the Fourier-transformed

ones.

Proof.

H(ω) =

∫ ∫
f (ξ)g(t− ξ) dξ e−iωt dt

=

∫
f (ξ) e−iωξ

[∫
g(t− ξ) e−iω(t−ξ) dt

]
dξ

t′=t−ξ
=

∫
f (ξ) e−iωξ dξ G(ω)

= F (ω)G(ω)

The integration boundaries±∞ did not change by doing that, and G(ω) does not depend on ξ. The

inverse Convolution theorem is:

Theorem 2.2 (Inverse convolution theorem). Let be
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f (t)↔ F (ω)

g(t)↔ G(ω)

Then

h(t) = f (t)× g(t)↔ H(ω) =
1

2π
F (ω)⊗G(ω) (2.36)
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Proof.

H(ω) =

∫
f (t) g(t) e−iωt dt

=

∫ (
1

2π

∫
F (ω′) e+iω′t dω′ × 1

2π

∫
G(ω′′) e+iω′′t dω′′

)
e−iωt dt

=
1

(2π)2

∫
F (ω′)

∫
G(ω′′)

∫
ei(ω

′+ω′′−ω)t dt︸ ︷︷ ︸
=2πδ(ω′+ω′′−ω)

dω′dω′′

=
1

2π

∫
F (ω′)G(ω − ω′) dω′

=
1

2π
F (ω)⊗G(ω)

Contrary to the Convolution Theorem (2.35) in (2.36) there is a factor 1/2π in front of the convolution of

the Fourier transforms.

A widely popular exercise is the unfolding of data: the instruments’ resolution function “smears out” the

quickly varying functions, but we naturally want to reconstruct the data to what they would look like if



M.Orlandini Temporal Data Analysis 55

the resolution function was infinitely good – provided we precisely knew the resolution function. In prin-

ciple, that's a good idea – and thanks to the Convolution Theorem, not a problem: you Fourier-transform

the data, divide by the Fourier-transformed resolution function and transform it back. For practical ap-

plications it doesn't quite work that way. As in real life, we can't transform from−∞ to +∞, we need

low-pass filters, in order not to get “swamped” with oscillations resulting from cut-off errors. There-

fore, the advantages of unfolding are just as quickly lost as gained. Actually, the following is obvious:

whatever got “smeared” by finite resolution, can't be reconstructed unambiguously. Imagine that a very

pointed peak got eroded over millions of years, so there's only gravel left at its bottom. Try reconstruct-

ing the original peak from the debris around it! The result might be impressive from an artist's point of

view, an artifact, but it hasn't got much to do with the original reality.

Ex. 2.4 Convolution: Gaussian frequency distribution. Lorentzian frequency
distribution
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2.2.2.2 Cross Correlation

Sometimes, we want to know if a measured function f (t) has anything in common with another mea-

sured function g(t). Cross correlation is ideally suited to that.
Definition 2.6 (Cross correlation).

h(t) =

∫ +∞

−∞
f (ξ) g∗(t + ξ) dξ ≡ f (t) ? g(t) (2.37)

Important note: Here, there is a plus sign in the argument of g, therefore we don't mirror g(t). For even

functions g(t) this doesn't matter. The asterisk ∗means complex conjugated. We may disregard it for

real functions. The symbol ? means cross correlation, and is not to be confounded with⊗ for folding.

Cross correlation is associative and distributive, yet not commutative. That's not only because of the

complex-conjugated symbol, but mainly because of the plus sign in the argument of g(t). Of course, we

want to convert the integral in the cross correlation to a product by using Fourier transformation.

Theorem 2.3 (Cross correlation). Let be
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f (t)↔ F (ω)

g(t)↔ G(ω)

Then

h(t) = f (t) ? g(t)↔ H(ω) = F (ω)×G∗(ω) (2.38)

Proof.

H(ω) =

∫ ∫
f (ξ) g∗(t + ξ) dξ e−iωt dt

=

∫
f (ξ)

[∫
g∗(t + ξ) e−iωt dt

]
dξ

=

∫
f (ξ)G∗(+ω) e+iωt dξ

= F (ω)×G∗(ω)
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In the third passage we used the first shifting rule with ξ = −a. In the last passage we use the following

identity:

G(ω) =

∫
g(t) e−iωt dt

G∗(ω) =

∫
g∗(t) e+iωt dt

G∗(−ω) =

∫
g∗(t) e−iωt dt

The interpretation of (2.38) is simple: if the spectral densities off (t) andg(t) are a good match, i.e. have

much in common, thenH(ω) will become large on average, and the cross correlation h(t) will also be

large, on average. Otherwise, if F (ω) would be small e.g. where G∗(ω) is large and vice versa, so that

there is never much left for the productH(ω). Then also h(t) would be small, i.e. there is not much in
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common between f (t) and g(t).

2.2.2.3 Autocorrelation

The autocorrelation function is the cross correlation of a function f (t) with itself. You may ask, for what

purpose we'd want to check for what f (t) has in common with f (t). Autocorrelation, however, seems

to attract many people in a magical manner. We often hear the view, that a signal full of noise can be

turned into something really good by using the autocorrelation function, i.e. the signal-to-noise ratio

would improve a lot. Don't you believe a word of it! We'll see why shortly.
Definition 2.7 (Autocorrelation).

h(t) =

∫
f (t) f ∗(ξ + t) dξ (2.39)

From its definition and the cross-correlation theorem (2.38) we have the so called
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Theorem 2.4 (Wiener-Khinchin).

f (t)↔ F (ω)

h(t) = f (t) ? f (t)↔ H(ω) = F (ω)× F ∗(ω) = |F (ω)|2
(2.40)

We may either use the Fourier transform F (ω) of a noisy function f (t) and get angry about the noise

in F (ω), or we first form the autocorrelation function h(t) from the function f (t) and are then happy

about the Fourier transformH(ω) of function h(t). Normally,H(ω) does look a lot less noisy, indeed.

Instead of doing it the roundabout way by using the autocorrelation function, we could have used the

square of the magnitude of F (ω) in the first place. We all know, that a squared representation in the

ordinate always pleases the eye, if we want to do cosmetics to a noisy spectrum. Big spectral components

will grow when squared, small ones will get even smaller. But isn't it rather obvious that squaring doesn't

change anything to the signal-to-noise ratio? In order to make it “look good”, we pay the price of losing

linearity.
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2.2.2.4 The Parseval Theorem

The autocorrelation function also comes in handy for something else, namely for deriving Parseval the-

orem. We start out with (2.39), insert especially t = 0, and get Parseval theorem:
Theorem 2.5 (Parseval theorem).

h(0) =

∫
|f (t)|2 dt =

1

2π

∫
|F (ω)|2 dω (2.41)

The second equal sign is obtained by inverse transformation of |F (ω)|2 where, for t = 0, eiωt becomes

unity.

Equation (2.41) states that the information content of the function f (x) – defined as integral over the

square of the magnitude – is just as large as the information content of its Fourier transformF (ω) (same

definition, but with 1/(2π)).
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2.3 Window Functions

By necessity, every observed signal we process must be of finite extent. The extent may be adjustable

and selectable, but it must be finite. If we observe the signal for T units of time, in order to apply our

continuous Fourier transformations we perform a so-called period extension of our data, as shown in Fig-

ure 2.3. It is evident that if the periodic extension of a signal does not commensurate with its natural

period, then discontinuities at the boundaries will be present. These discontinuities will introduce spu-

rious frequencies, responsible for spectral contributions over the entire set of frequencies. This effect is

called spectral leakage.

Windows are weighting functions applied to data to reduce spectral leakage associated with finite ob-

servations intervals. From one viewpoint, the window is applied to data (as a multiplicative weighting)

to reduce the order of the discontinuity of the periodic extension. This is accomplished by matching as

many orders of derivatives (of the weighted data) as possible at the boundary. The easiest way to achieve
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Figure 2.9: Periodic extension of a sinusoidal signal not periodic in the observation interval
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this matching is by setting the value of these derivatives to zero or near zero. Thus windowed data are

smoothly brought to zero at the boundaries so that the periodic extension of the data is continuous in

many orders of derivatives.

From another viewpoint, the window is multiplicatively applied to the Fourier frequencies so that a sig-

nal of arbitrary frequency will exhibit a significant component for frequencies close to the Fourier fre-

quencies. Of course both viewpoints lead to identical results.

All window functions are, of course, even functions. The Fourier transforms of the window function

therefore don't have an imaginary part. We require a large dynamic range in order to better compare

window qualities. That's why we'll use logarithmic representations covering equal ranges. And that's

also the reason why we can't have negative function values. To make sure they don't occur, we'll use the

power representation, i.e. |F (ω)|2.
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Figure 2.10: Rectangular window function and its Fourier transform in power representation.

2.3.1 The Rectangular Window

f (t) =


1 for − T/2 ≤ t ≤ T/2

0 else
(2.42)

has the power representation of the Fourier transform (see (2.28)):

|F (ω)|2 = T 2

(
sin(ωT/2)

ωT/2

)2

(2.43)

The rectangular window and this function are shown in Figure 2.10.
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2.3.1.1 Zeroes

Where are the zeros of this function? We'll find them at ωT/2 = lπ with l = 1, 2, 3, . . . and without

the zero! The zeros are equidistant, the zero at l = 0 in the numerator gets plugged by a zero in the

denominator.

2.3.1.2 Intensity at the Central Peak

Now we want to find out how much intensity is at the central peak, and how much gets lost in the side-

bands (sidelobes). To get there, we need the first zero atωT/2 = π orω = ±2π/T and:∫ +2π/T

−2π/T

T 2

(
sin(ωT/2)

ωT/2

)2

dω
ωT/2=x

= T 2 2

T 2
2

∫ +2π

0

sin2 x

x
dx = 4T Si(2π) (2.44)

where Si(x) is the sine integral, defined as

Si(x) ≡
∫ x

0

sin y

y
dy (2.45)
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The last passage in (2.44) may be proved as follows. We start out with∫ π

0

sin2 x

x
dx

and integrate per parts withu = sin2 x and v = −1/x:

∫ π

0

sin2 x

x
dx =

sin2 x

x

∣∣∣∣π
0

+

∫ π

0

2 sinx cosx

x
dx

= 2

∫ π

0

sin 2x

2x
dx

2x=y
= Si(2π)

(2.46)

By means of the Parseval theorem (2.41) we get the total intensity∫ +∞

−∞
T 2

(
sin(ωT/2)

ωT/2

)2

dω = 2π

∫ +T/2

−T/2
12 dt = 2πT (2.47)

The ratio of the intensity at the central peak to the total intensity is therefore
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4T Si(2π)

2πT
=

2

π
Si(2π) = 0.903

This means that≈ 90% of the intensity is in the central peak, whereas some 10% are “wasted” in the

sidelobes.

2.3.1.3 Sidelobe Suppression

Now let's determine the height of the first sidelobe. To get there, we need:

d|F (ω)|2

dω
= 0 or also

dF (ω)

dω
= 0 (2.48)

and this occurs when

d

dx

sinx

x
= 0

x=ωT/2
=

x cosx− sinx

x2

Solving this transcendental equation gives us the smallest possible solutionx = 4.4934 orω = 8.9868/T .
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Inserting this value in |F (ω)|2 results in:∣∣∣∣F (8.9868

T

)∣∣∣∣2 = T 2 × 0.04719 (2.49)

Forω = 0 we get |F (0)|2 = T 2, the ratio of the first sidelobe height to the central peak height is there-

fore 0.04719. It is customary to express ratios between two values spanning several order of magnitude

in decibel (short dB). The definition of decibel is

dB ≡ 10 log10 x (2.50)

Quite regularly people forget to mention what the ratio's based on, which can cause confusion. Here

we're talking about intensity-ratios. If we're referring to amplitude-ratios, (that is, F (ω)), this would

make precisely a factor of two in logarithmic representation! Here we have a sidelobe suppression (first

sidelobe) of:
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10 log10 0.04719 = −13.2 dB

2.3.1.4 3 dB Bandwidth

As the 10 log10(1/2) = −3.0103 ≈ −3, the 3 dB bandwidth tells us where the central peak has dropped

to half its height. This is easily calculated as follows

T 2

(
sin(ωT/2)

ωT/2

)2

=
1

2
T 2

Usingx = ωT/2 we have

sin2 x =
x

2
or sinx =

x√
2

This transcendental equation has the following solution:
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x = 1.3915, thusω3 dB =
2.783

T

This gives the total width (±ω3 dB):

∆ω =
5.566

T
(2.51)

This is the slimmest central peak we can get using Fourier transformation. Any other window function

will lead to larger 3 dB-bandwidths. Admittedly, it's more than nasty to stick more than 10% of the infor-

mation into the sidelobes. If we have, apart from the prominent spectral component, another spectral

component, with – say – an approx. 10 dB smaller intensity, this component will be completely smoth-

ered by the main component's sidelobes. If we're lucky, it will sit on the first sidelobe and will be visible;

if we're out of luck, it will fall into the gap (the zero) between central peak and first sidelobe and will get

swallowed. So it pays to get rid of these sidelobes.

Warning! This 3 dB-bandwidth is valid for |F (ω)|2 and not for F (ω)! Since one often uses |F (ω)| or
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the cosine-/sine-transformation one wants the 3 dB-bandwidth thereof, which corresponds to the 6 dB-

bandwidth of |F (ω)|2. Unfortunately, you cannot simply multiply the 3 dB-bandwidth of |F (ω)|2 by
√

2, you have to solve a new transcendental equation. However, it's still good as a first guess because you

merely interpolate linearly between the point of 3 dB-bandwidth and the point of the 6 dB-bandwidth.

You'd overestimate the width by less than 5%.

2.3.2 Windowing or Convolution?

In principle, we have two possibilities to use window functions:

o Either you weight, i.e. you multiply, the input by the window function and subsequently Fourier-

transform, or

o You Fourier-transform the input and convolute the result with the Fourier transform of the window

function.
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According to the Convolution Theorem (2.35) we get the same result. What are the pros and cons of

both procedures? There is no easy answer to this question. What helps in arguing is thinking in discrete

data. Take, e.g., a weighting window. Let's start with a reasonable value for the its parameter, based

on considerations of the trade-off between 3 dB-bandwidth (i.e. resolution) and sidelobe suppression.

In the case of windowing we have to multiply our input data, say N real or complex numbers, by the

window function which we have to calculate atN points. After that we Fourier-transform. Should it turn

out that we actually should require a better sidelobe suppression and could tolerate a worse resolution –

or vice versa – we would have to go back to the original data, window them again and Fourier-transform

again.

The situation is different for the case of convolution: we Fourier-transform without any bias concern-

ing the eventually required sidelobe suppression and subsequently convolute the Fourier data (again

N numbers, however in general complex!) with the Fourier-transformed window function, which we

have to calculate for a sufficient number of points. What is a sufficient number? Of course, we drop
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the sidelobes for the convolution and only take the central peak! This should be calculated at least for

five points, better more. The convolution then actually consists of five (or more) multiplications and a

summation for each Fourier coefficient. This appears to be more work; however, it has the advantage

that a further convolution with another, say broader Fourier-transformed window function, would not

require to carry out a new Fourier transformation. Of course, this procedure is but an approximation

because of the truncation of the sidelobes. If we included all data of the Fourier-transformed window

function including the sidelobes, we had to carry outN (complex) multiplications and a summation per

point, already quite a lot of computational effort, yet still less than a new Fourier transformation. This

could be relevant for large arrays, especially in two or three dimensions like in image processing and

tomography.



Temporal Analysis in X–ray Astronomy
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Now we will apply all the mathematical tools developed in Part I to real data. In particular we will ex-

plore the techniques that are commonly used in timing studies of X–ray sources. The regime we will be

referring to is that of equidistantly binned timing data, the background noise of which is dominated by

counting statistics. If there are gaps in the data, they are far apart and the data are not “sparse” in the

sense that nearly all time bins are empty. This kind of data are eminently suited to analysis with FFT

techniques, and the discussed methods will be based on these techniques.

3.1 Power Spectra in X–ray Astronomy

If we indicate with xk, k = 0, 1, 2, . . . , N − 1, the number of photons detected in bin k by our instru-

ment, then the discrete Fourier transform aj, with j = −N/2, . . . , N/2 − 1, decomposes this signal

intoN sine waves. The following expressions describe the signal transform pair:
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Definition 3.8 (Discrete Fourier transform in X–ray astronomy).

aj =

N−1∑
k−0

xk e
2πijk/N j = −N

2
, . . . ,

N

2
− 1 (3.1a)

xk =
1

N

N/2−1∑
j=−N/2

aj e
−2πijk/N k = 0, 1, . . . , N − 1 (3.1b)

Important Note: In X–ray astronomy it is customary the use of the convention as in Press et al. Accord-

ingly, the prefactor 1/N is present in the inverse discrete Fourier transform and not in the direct one. The

consequence is that a0 will not be anymore the average, but the total number of countsNph =
∑

k xk.

As we said before, it is only a question of convention.

If the signal is an equidistant time series of lengthT , so thatxk refers to a time tk = k(T/N), then the

transform is an equidistant “frequency series”, and aj refers to a frequency ωj = 2πνj = 2πj/T . The

time step is δt = T/N ; the frequency step is δν = 1/T .

Note that a−N/2 =
∑

k xk e
−πik =

∑
k xk (−1)k = aN/2, and that a0 is nothing else that the total
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number of detected photons a0 =
∑

k xk ≡ Nph.

We have already seen that the Parseval theorem relates the aj andxk:

N−1∑
k=0

|xk|2 =
1

N

N/2−1∑
j=−N/2

|aj|2 (3.2)

This implies that there is a relation between the summed squared modulus of the Fourier amplitudes

and the total variance of the data:

Var(xk) =
∑
k

(xk − x̄)2 =
∑
k

x2
k − 2x̄

∑
k

xk︸ ︷︷ ︸
Nx̄

+N(x̄)2

=
∑
k

x2
k −N(x̄)2 =

∑
k

x2
k −

1

N

(∑
k

xk

)2

(3.2)
=

1

N

∑
j

|aj| −
1

N
|a0|2
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Therefore we have

Var(xk) =
1

N

N/2−1∑
j=−N/2
j 6=0

|aj|2 (3.3)

Adopting the normalization used by Leahy et al. (1983), we will define
Definition 3.9 (Power spectrum).

Pj ≡
2

Nph
|aj|2 j = 0, 1, 2, . . . ,

N

2
(3.4)

whereNph is the total number of photons.

Taking into account that for real data |aj| = |a−j| and that the term at the Nyquist frequency occurs

only once in (3.3), we find the expression for the total variance in terms ofPj:

Var(xk) =
Nph

N

N/2−1∑
j=1

Pj +
1

2
PN/2

 (3.5)

Note the difference in the indexing ofaj andPj. Often the variance is expressed in terms of the fractional
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root-mean-square (rms) variation in thexk:

rms =

√
1

N
Var(xk)

x̄
=

√√√√√ 1

Nph

N/2−1∑
j=1

Pj +
1

2
PN/2

 (3.6)

Sometimes rms is expressed in terms of percentage, and is then called the “percentage rms variation”.

A sinusoidal signal xk = A sin(2πνjtk) at the Fourier frequency νj will cause a spike at νj in the power

spectrum with

Pj,sine =
1

2

N 2

Nph
A2 (3.7)

The reason for choosing this apparently rather awkward normalization for the powers lies in the statis-

tical properties of the noise power spectrum, to be described later.

Finally, let us discuss on relation between the sampledxk (with Fourier transform aj) and the continuous

function x(t) (with Fourier transform a(ν)). It is easy to understand that xk is given by a double multi-

plication by two functions:
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Window Function

w(t) =


1 0 ≤ t < T

0 else
(3.8)

Sampling Function

i(t) =

+∞∑
k=−∞

δ

(
t− k T

N

)
(3.9)

Therefore in order to obtain the power spectrum ofxk we must perform a double convolution with both

the window and the sampling functions. The power spectrum of the shifted window function is (see

Section 2.3.1):

|W (ν)|2 =

∣∣∣∣sin πνTπν

∣∣∣∣2 (3.10)

The Fourier transform on an infinitely extended periodic series of δ-functions is

I(ν) =
N

T

+∞∑
k=−∞

δ

(
ν − kN

T

)
(3.11)

The functionsw(t) and i(t), together with the corresponding power spectraW (ν) and I(ν), are shown
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in Figure 3.1.

The convolution ofa(ν) withW (ν) causes all features in the power spectrum to become wider. We have

already seen that the convolution with aδ-function atν0 causes a shift of the function byν0: f (ν)∗δ(ν−

ν0) = f (ν−ν0) Therefore the convolution ofa(ν) withI(ν), which is a series ofδ-functions with spacing

N/T results in a convolved function a(ν) ∗ I(ν) that repeats everyN/T frequency units.

For a real signal x(t) we have, as before, a(−ν) = a∗(ν), so that |a(ν)|2 = |a(−ν)|2: the power spec-

trum is symmetric with respect to v = 0. The final result is that the power spectrum of the convolved

function |a(ν) ∗ I(ν)|2 is reflected around the Nyquist frequency νN/2 = 1
2N/T . This causes features

with a frequency exceeding the Nyquist frequency by νx to appear also at a frequency νN/2− νx, a phe-

nomenon we have already seen and known as aliasing.

From their definitions, is is straightforward to show that the discrete Fourier amplitudesaj are the values

at the Fourier frequencies νj = j/T of the windowed and aliased continuous Fourier transform aWI(ν)



M.Orlandini Temporal Data Analysis 83

Figure 3.1: Left: Obtaining the discrete time seriesxk involves the application of the two functionw(t) (window function) and i(t) (sampling function).
The bottom panel show the final results. Right: The discrete Fourier transformaj ofxk is obtained out of the continuous Fourier transform by a double
convolution. These are the power spectra corresponding to the various Fourier transforms. Vertical dashed lines indicate the Nyquist frequency
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aWI(ν) = a(ν) ∗W (ν) ∗ I(ν) =

∫ +∞

−∞
x(t)w(t) i(t) e2πiνt dt =∫ +∞

−∞
x(t)

N−1∑
k=0

δ

(
t− k T

N

)
e2πiνt dt =

N−1∑
k=0

x

(
k
T

N

)
e2πiνkT/N

(3.12)

so that aWI(j/T ) = aj. Explicitly performing the convolution of a(ν) with I(ν) we finally have

aj = aWI(j/T ) = aW(j/T ) ∗ aI(j/T ) =
N

T

+∞∑
k=−∞

aW

(
vk − k

N

T

)
(3.13)

were we used (3.11) and where νj = j/T and aW = a(ν) ∗W (ν).

To summarize: the transition from the continuous Fourier transform to the discrete Fourier transform

involves two operations: windowing, a convolution with the functionW (ν) which is essentially a peak

with a widthδν = 1/T plus sidelobes, and aliasing, a reflection of features above the Nyquist frequency

back into the range (0, νN/2). Windowing is caused by the finite extent, aliasing by the discrete sampling

of the data.
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In practice, aliasing is not so much of a problem as one might fear, as the data are not really discretely

sampled at intervals δt = T/N , but rather binned into time bins with a width δt. This is equivalent of

convolving with the “binning window”

b(t) =


N/T − T

2N
< t <

T

2N

0 else

(3.14)

before the discrete sampling. Applying the inverse convolution theorem, we can see that the effect of

this on the Fourier transform will be that a(ν) is multiplied with the transform of b(t):

B(ν) =
sin πνT/N

πνT/N
(3.15)

This function drops from a value of 1 at ν = 0 to 0 at ν = N/T ; halfway, at the Nyquist frequency

it has the value 2/π. The effect of this multiplication is a considerable repression of the high-frequency

features that could be aliased back into the frequency range (0, νN/2). This is understandable: the effect
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of the binning is nothing else than averaging the time series over the bin widthT/N so that variations

with a frequency close toN/T are largely averaged out.

The problem caused by the windowing can be more serious: the “leakage” cause by the finite width of

the central peak ofW (ν) and its sidelobes can strongly distort steep power spectra (they becomes less

steeper) and it can spread out δ-functions over the entire power spectrum.

3.2 Power Spectral Statistics

In general, signal processing is devoted to detection and estimation. Detection is the task of determining

if a specific signal set is present in the observation, while estimation is the task of obtaining the values of

the parameters describing the signal. The process of detecting something in a power spectrum against

a background of noise has several steps. To quantify the power of the source signal, that is to determine

what the power signalPj,signal would have been in the absence of noise, we must consider the interaction
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between the noise and the signal.

As our starting point we will make the assumption that our signal will be due to the sum of two indepen-

dent processes: signal and noise. This corresponds to assume xk = xk,signal + xk,noise. For the linearity

of the Fourier transform if bj and cj are the Fourier transforms ofxk,signal andxk,noise, then aj = bj + cj.

This means that a similar properties does not apply to power spectra:

|aj|2 = |bj + cj|2 = |bj|2 + |cj|2 + cross terms (3.16)

If the noise is random and uncorrelated, and if many powers are averaged, then the cross terms will tend

to average out to zero, and we can write down

Pj = Pj,signal + Pj,noise (3.17)
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3.2.1 The Probability Distribution of the Noise Powers

For a wide range of type of noise, the noise powers Pj,noise follow a χ2 distribution with 2 degrees of

freedom (dof). Indeed, if Aj and Bj are the Fourier coefficient of the noise signal, then the Parseval

theorem says that Pj,noise = A2
j + B2

j . But Aj and Bj are linear combinations of the xk, therefore if

xk are normally distributed, then theAj andBj do as well, so thatPj,noise, by definition, is distributed

according to theχ2 distribution with 2 dof.

If thexk follow some other probability distribution, for example the Poisson distribution, then it follows

from the central limit theorem that for “certain” conditions on this other distribution (i.e. for largeN ),

theAj andBj will be approximately normally distributed.

In practice, one finds out that noise powers are nearly alwaysχ2 distributed, not only for Poisson noise,

but also for many other type of noise.

The power spectrum normalization defined in (3.4) is chosen in such a way that if the noise in the photon
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counting dataxk is pure Poissonian counting noise, then the distribution of thePj, noise is exactly given

by aχ2 distribution with 2 dof. Therefore the probability to exceed a certain threshold power levelPthr

is given by

Prob(Pj,noise > Pthr) = Q(Pthr|2) j = 1, 2, . . . , N/2− 1 (3.18)

where the integral probability of theχ2 is defined as

Q(χ2|n) =
1

2n/2 Γ
(n

2

) ∫ ∞
χ2

t
n
2−1 e−

t
2 dt (3.19)

wheren is the number of dof.

Because thePj,noise follow this distribution, the power spectrum is very noisy; the standard deviation of

the noise powers is equal to their mean value:

σPj = 〈Pj〉 = 2 (3.20)
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Two more or less equivalent methods are often used to decrease the large variance of thePj,noise.

o Rebin the power spectrum, averaging b consecutive frequency bins;

o Divide the data up intoM equal segments, transform these segments each individually and then

average the resulting M power spectra, each normalized according to (3.4). The Nph is now the

number of photons in each transform.

These two methods, of course, degrade the frequency resolution.

Because the time required to computed the Fourier transform ofN data point using an FFT algorithm

is proportional toN logN , there is a computational advantage in the second method; the time saving

factor is about 1 + logM/ logN .

For a variable source, a further advantage of the second method is the possibility to follow the variations

of the power spectra as a function of time and/or intensity (see Figure 3.2).

The first method, on the other hand, has the advantage of producing a power spectrum that extends to
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Figure 3.2: Dynamic power spectrum of the low mass X–ray binary 4U 1728–34. The color map shows increasing power in the order green, red, blue,
and white. The time increases along the horizontal axis with a resolution of 1 sec. The total time shown is 32 sec. During the burst (the yellow line) the
source exhibits pulsation at∼ 363 Hz (Strohmayer et al. 1996. ApJ 469, L9)
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lower frequencies. It is of course possible to combine both methods: each power in the final spectrum

will be the average ofMb original powers.

Because of the additive properties of theχ2 distribution, the sum ofMbpowers is distributed according

to the χ2 distribution with 2Mb dof, so that the probability for a given power Pj,noise in the average

spectrum to exceed aPthr will be

Prob(Pj,noise > Pthr) = Q(MbPthr|2Mb) (3.21)

For largeMb this distribution tends asymptotically to a normal distribution with a mean of 2 and a stan-

dard deviation of 2/
√
Mb:

lim
Mb→∞

Prob(Pj,noise > Pthr) = QGauss

(
Pthr − 2

2/
√
Mb

)
(3.22)

where the integral probability of the normal distribution is
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QGauss(x) =
1√
2π

∫ ∞
x

e−t
2/2 dt (3.23)

3.2.2 The rms Variation in the Source Signal

Assuming that the signal power spectrum has been properly separated from the total power spectrum,

we can convert the signal power into the rms variation of the source signalxk using the expression

rms =

√
b
∑

j Pj,signal

Nph
(3.24)

wherePj is anMb times averaged power and whereNph is the number of photons per transform.

3.3 Power Spectral Searches Made Easy

In this section we collect all previous results into a “how-to” recipe for testing the power spectrum for a

weak signal using equal statistically independent trials
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Figure 3.3: Effect of choosing the binning size in detecting weak features: the case of the kHz QPO in 4U 1728–34. The same data are shown in both
the two panels, but the right bin size reveals the QPO at∼ 800 Hz

À Determine theM and b. The optimal choice forMb is that which approximately matches the ex-

pected width of the power spectral feature one desires to detect, ∆ν ≥ Mb/Tobs (see Figure 3.3

for the effects of choosing the right b). Note that gaps in the data or the desire to observe the time

evolution of the power spectrum may dictateM .

Á Calculate theM power spectra normalized according to (3.4). Note that xk is the number of pho-
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tons in bin k andNph is the number of photons in one power spectrum.

Â Average theM power spectra.

Ã Observe the noise power distribution. Is the noise power spectrum flat? Is its mean level equal to 2?

If so, the noise is probably dominated by Poissonian counting statistics. If not, it is necessary to find

out why.

Ä Determine the detection level.

Å Check the average spectrum for powers exceeding the detection level.

Æ Quantify the signal power in terms of a detection or an upper limit.

Ç Convert the signal power into the relative rms variation of the source signal, defined as

rms =

√
1

N

∑
k

(RATEk − 〈RATE〉)2 (3.25)
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and compute the excess variance

Excess Variance =

√
rms2 − 1

N

∑
k

ERROR2
k (3.26)

È To say more about the signal, you need to model its power spectrum.

3.4 Type of Variability

In the previous Section we were left with the last point in our “how-to” with the problem of modeling a

power spectrum. In this section we will deal with the problem of linking the shape of a power spectrum

with the statistical processes that originated the timing variability. In Figure 3.4 we show a schematic

power spectrum of an X–ray source displaying characteristic features: a continuum described in terms

of 1/f noise, a Quasi-Periodic Oscillation (QPO) and a sharp peak due to a coherent signal (in this case

the rotation period of the object). We have already discussed on the Poissonian level; now we will now
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Figure 3.4: Noise classification in astronomical power spectra

analyze in details the other components.

3.4.1 1/f Noise

Definition 3.10 (1/f noise). 1/f refers to the phenomenon of the spectral density, S(f ), having the

form

S(f ) = K f−α (3.27)
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where f is the frequency.

1/f noise is an intermediate between the well understood white noise with no correlation in time and

random walk (Brownian motion) noise with no correlation between increments (see Figure 3.5). Brow-

nian motion is the integral of white noise, and integration of a signal increases the exponent α by 2

whereas the inverse operation of differentiation decreases it by 2. Therefore, 1/f noise can not be ob-

tained by the simple procedure of integration or of differentiation of such convenient signals. Moreover,

there are no simple, even linear stochastic differential equations generating signals with 1/f noise.

The widespread occurrence of signals exhibiting such behavior suggests that a generic mathematical

explanation might exist. Except for some formal mathematical descriptions like fractional Brownian

motion (half-integral of a white noise signal), however, no generally recognized physical explanation of

1/f noise has been proposed. Consequently, the ubiquity of 1/f noise is one of the oldest puzzles of

contemporary physics and science in general.
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Figure 3.5: Examples of 1/f noise: on the left the time series and on the right the corresponding power spectrum
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Figure 3.6: Examples of 1/f noise observed in both in the natural world and in man-made processes from physics, biology, neuroscience, and psy-
chology
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The case of α = 1, or pink noise, is both the canonical case, and the one of most interest, but the more

general form, where 0 < α ≤ 3, is sometimes referred to simply as 1/f . 1/fα noise is of interest

because it occurs in many different systems, both in the natural world and in man-made processes (see

Figure 3.6) from physics, biology, neuroscience, and psychology.

Although 1/f noise appears in many natural systems and has been intensively studied for decades with

many attempts to describe the phenomenon mathematically, researchers have not yet been able to

agree on a unified explanation. Thus, there exist at present several formulations of systems that give

rise toS(f ) = K/fα.

3.4.2 Shot Noise Process

First, let tk be a Poisson point process. A shot noise process is obtained by attaching to each tk a relax-

ation function (unilateral exponential function)
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Figure 3.7: The shot noise process

N(t) = N0e
−λt, t ≥ 0

and summing on k (see Figure 3.7). The Fourier transform of the shot noise process is (see Page 46)

S(f ) = lim
T→∞

1

T
〈| F (f ) |2〉 =

N 2
0n

λ2 + f 2

wheren is the average rate at which tk occur, andT is the interval over which the process is observed. As
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we have already seen, the power spectrum of an unilateral exponential function is a Lorentzian function.

For an aggregation of shot noise processes withλuniformly distributed on [λ1, λ2], the power spectrum

is

S(f ) =



N 2
0n if 0� f � λ1 � λ2

N 2
0nπ

2f (λ2 − λ1)
· 1

f
ifλ1 � f � λ2

N 2
0n ·

1

f 2
if 0� λ1 � λ2 � f

If the impulse response function is a power law,N0x
−β, the process is called fractal shot noise, and the

power spectrum is of the form

S(f ) ≈ k

f 2(1−β)
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Whenβ = 1/2, we obtainS(f ) ≈ 1/f .

3.5 Fitting Power Spectra Continuum with Lorentzians

Instead of describing the observed power spectrum continua in terms of 1/f noise, recently it has be-

come quite popular a different approach. The power spectrum from X–ray sources like low-mass X–

ray binaries (LMXB) can be described in terms of a flat-top continuum at low frequencies that becomes

steeper at high frequencies, with bumps and wiggles. This continuum can be fit without the need of

power-law components, but as a sum of Lorentzians, some of which are broad (Belloni et al. 2002).

The power spectra are described as the sum of Lorentzian componentsL(ν) of the form

L(ν) =
r2∆

π

1

∆2 + (ν − ν0)2
(3.28)

where r is the integrated fractional rms (over−∞ to +∞) of each Lorentzian and ∆ is its Half-Width at

Half Maximum (HWHM=FWHM/2). The power spectra are then displayed in aν Pν plot. The frequency
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νmax at which the ν Pν attains its maximum is

νmax =
√
ν2

0 + ∆2 = ν0

√
1 +

1

4Q2
(3.29)

where Q ≡ ν0/2∆ is called quality factor. Note that νmax ≥ ν0: the difference is small for narrow

features but becomes large in the case of broad ones. In Figure 3.8 we show an example of such a fit for

two LMXB: XTE 1118+480 and 1E 1724–3045.

With this phenomenological modelization it is possible to use a limited number of fit components and

compare the power spectra of different sources. But what is the physical mechanism responsible for the

observed shape of the power spectra is still an open issue.

3.6 Quasi-Periodic Oscillations (QPO)

Quasi-Periodic Oscillations (QPO) are broad features observed in the power spectra of many X–ray sources.

They are described in terms both of a Gaussian or a Lorentzian shape. As discussed above, the Lorentzian
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Figure 3.8: Power spectra in ν Pν form for two LMXB XTE 1118+480 (left) and 1E 1724–3045 (right). The presence of more power at high frequency for
1E 1724–3045 is interpreted as due to the presence of a neutron star in the system (while XTE 1118+480 should hosts a black hole)
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shape has a physical basis as due to a shot noise process. The QPO can be therefore characterized by its

centroid frequency LC, its width LW, and its normalization LN. Instead of LN t is customary to give the

QPO percentage rms, defined as

percentage rms = 100

√
I

〈RATE〉
(3.30)

where I is the Lorentzian integral, defined as

I =
π

2
LC× LW

and 〈RATE〉 is the source average count rate. Sometimes, for a QPO is given the quality factorQ, defined

as

Q-factor =
LC

LW
(3.31)

In Figure 3.9 we show a Lorentzian fit to a QPO observed in the low-mass X-ray binary and atoll source
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Figure 3.9: Typical Leahy normalized power spectra in the energy range of 2–18 keV. (a) The kHz QPO at 1150 Hz; (b) the complex high-frequency noise
and the 67 Hz QPO. From Wijnands et al. 1998. ApJ 495, L39

4U 1735-44.

3.7 Analysis of a Coherent Signal

In X–ray astronomy (and in astronomy in general) the detection of coherent signal is quite common: for

example, we detect periodic signal as due to star pulsations, pulse periods in pulsars, orbital modula-

tions and eclipses, precession.
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Two methods of analysis are used to examine data for evidence for periodic signals: FFT and epoch fold-

ing. In general, both techniques have certain advantages and disadvantages in their application. There

latter are worsened both by the presence of gaps in the data and the large number of statistically inde-

pendent frequencies which could, in principle, be examined.

Epoch folding is more sensitive to non sinusoidal pulse shapes encountered in X–ray astronomy. Fur-

thermore, the technique is relatively insensitive to randomly occurring gaps in the data so long as the

net pulse phase coverage is reasonably uniform. Epoch folding is, however, extremely computer time-

consuming (even if now the increased CPU power of the current computers makes this issue less impor-

tant).

The FFT, on the other hand, is extremely efficient. However, the FFT is difficult to interpret in the pres-

ence of gaps in the data (and in this case is better to use the Lomb-Scargle periodogram technique).

The epoch folding consists in folding the data modulo a trial period and then grouping the observations

according to phase, in order to obtain a high signal-to-noise profile. Theχ2 statistics is then used to test
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the high signal-to-noise profile for uniformity. This statistic isχ2
n−1 distributed, wheren is the number

of phase bins. By varying the trial period we can build aχ2 vs period diagram and find out the one that

gives the maximumχ2 (that is, the rejection of the uniformity hypothesis). Because theχ2 distribution

resembles a triangular distribution (see Figure 3.10), it can be often well be fit by a Gaussian function, the

mean of which may be considered the “best” coherent period P present in the data. The FWHM of the

χ2 distribution should be of the order of∼ P 2/T , whereT is the total elapsed time of the observation.

Of course this method works if there are not intrinsic period variations, like the one due to orbital mo-

tions. In this case it is necessary to perform a time transformation that makes the signal coherent. This

transformation is called a timing model. The timing model predicts a model profile, or template, that is

correlated to the average profile so that a phase offset can be determined. When multiplied by the in-

stantaneous pulse period, that phase yields a time offset that can be added to a high-precision reference

point on the profile (for example, the edge of the profile) to create the time-of-arrival or TOA, as shown

in Figure 3.11. The general procedure to derive information on the source from the measured TOAs is
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Figure 3.10: Pulse period of the X–ray binary pulsar GX 301–2 obtained by means of the epoch folding technique
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depicted in Figure 3.12.

The TOA of the pulse numbern is, by definition,

tn = t0 + nP (3.32)

where t0 is a reference time (usually the start of the observation). When including intrinsic period vari-

ations we can perform a Taylor expansion inP and write down

tn = t0 + nP +
1

2
n2 PṖ +

1

6
n3 P 2P̈ + · · · (3.33)

Equation (3.33) can be inverted and expressed in terms of the pulse phaseϕ at time (t− t0)

ϕ = ϕ0 + f0(t− t0) +
1

2
ḟ (t− t0)2 +

1

6
f̈ (t− t0)3 + · · · (3.34)

where f0 = 1/P and f is the frequency. The precision with which a TOA can be determined is approx-

imately equal to the duration of a sharp pulse feature (e.g., the leading edge) divided by the signal-to-
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Figure 3.11: Measuring the phase shift with respect to a template
profile

Clock
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Solar System
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Initial Model
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Figure 3.12: General procedure to derive information on the source
from the measured TOAs
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Figure 3.13: The time of arrivals of pulses from celestial objects are referenced to the nearly inertial reference frame of the Solar System barycenter

noise ratio of the average profile. It is usually expressed in terms of the width of the pulse featuresWf in

units of the periodP , the pulse periodP , and the signal-to-noise ratio SNR such thatσTOA ∝ WfP/SNR.

Therefore strong, fast pulsars with narrow pulse profiles provide the best arrival times.

Before proceeding, it is better to eliminate the very first cause of period variations: the motion of the

Earth and/or of the spacecraft. This is done by referencing the TOAs to a nearly inertial reference frame:

the Solar System barycenter (see Figure 3.13).

The variation of the TOAs due to the orbital motion of the pulsar in the binary system can be written as
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an addition term in Equation (3.33) of the form

· · · + ax sin i

c
F (e, ω, τ, θ) (3.35)

where ax sin i is the projected semi-major axis of the pulsating star orbiting with an inclination angle

i in the binary system. The function F (e, ω, τ, θ) represents the eccentric orbit of the pulsar around

the center of mass of the binary system, where e is the eccentricity,ω the longitude of the periastron, τ

the time of periastron passage, and θ ≡ 2π(t − τ )/Porb is the mean anomaly (see Figure 3.14 for the

definition of the orbital parameters). In particular, we have that

F (e, ω, τ, θ) = (1− e2)
sin(υ + ω)

1 + e cos υ
(3.36)

where the true anomaly υ can be calculated from the observed mean anomaly θ using the relations

tan
υ

2
=

√
1 + e

1− e
tan

E

2
; E − e sinE = θ (3.37)



M.Orlandini Temporal Data Analysis 116

Figure 3.14: In this diagram, the orbital plane (yellow) intersects a reference plane (gray). The intersection is called the line of nodes, as it connects the
center of mass with the ascending and descending nodes
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The last relation is the so-called Kepler Equation. By fitting the series of TOAs with Equation (3.33) plus

(3.35), we are able to obtain the pulse periodP at time t0, its time derivatives Ṗ and P̈ , together with the

orbital parameters of the pulsar a sin i, e,ω, τ andPorb. An example of the Doppler curve, representing

the pulse delay times due to the light transit across the binary orbit, is shown in Figure 3.15 for the X–ray

binary pulsar Hercules X–1.
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Figure 3.15: Delays of the TOA in Her X–1 due to its orbital motion and theoretical sine curve for the 35 day orbital period. The residuals refer to different
orbital parameters solutions. From Staubert et al. 2009
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Where to find these class notes?

The class notes of this Course, both in slide format and booklet format, can be downloaded from the
following web page

+ http://www.iasfbo.inaf.it/~mauro/Didattica/Timing

Thank you for your attention. ..

. . . and PATIENCE!

We are all in the gutter,
but some of us are looking at the stars.

(Oscar Wilde)

http://www.iasfbo.inaf.it/~mauro/Didattica/Timing
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